Compare commits

...

6 Commits

Author SHA1 Message Date
Rodrigo Arias Mallo
90ea67cf08 Reduce temperature limits for testing 2025-10-13 21:09:06 +02:00
Rodrigo Arias Mallo
ebd47ee2c5 Use average temperature over 16 samples 2025-10-13 21:09:06 +02:00
Rodrigo Arias Mallo
c2e823dfb5 Use 10 kOhm for NTC voltage divider 2025-10-13 21:09:06 +02:00
Rodrigo Arias Mallo
2546447652 Reduce global variables 2025-10-13 21:09:06 +02:00
Rodrigo Arias Mallo
eaf4e9d814 Fix upload speed 2025-10-13 21:09:06 +02:00
Rodrigo Arias Mallo
9c114b136a Add NTC coefficients to measure celsius 2025-10-13 21:09:06 +02:00
8 changed files with 417 additions and 238 deletions

2
barista/.gitignore vendored
View File

@ -1 +1,3 @@
build/
test_ntc
*.o

View File

@ -1,17 +1,35 @@
# Copyright (c) 2025 Rodrigo Arias Mallo <rodarima@gmail.com>
# SPDX-License-Identifier: GPL-3.0-or-later
PORT=/dev/ttyUSB0
FQBN=arduino:avr:atmega328bb
OPTS=--no-color --log-level=info -v
OPTS=--no-color --log-level=info
#OPTS+=-v
PROJ=barista
BUILD=build/$(subst :,.,$(FQBN))
HEX=$(BUILD)/$(PROJ).ino.hex
# For host test programs
CPPFLAGS=-I.
LIBS=-lm
all: $(HEX)
$(HEX): barista.ino
$(HEX): barista.ino ntc.c ntc.h pinout.h
arduino-cli compile $(OPTS) -e --fqbn $(FQBN)
upload: $(HEX)
avrdude -vv -p atmega328p -c arduino -P $(PORT) -b 9600 -D -U flash:w:$(HEX):i
serial:
picocom -b 115200 --lower-rts --lower-dtr /dev/ttyUSB0 --imap lfcrlf
picocom -b 9600 --lower-rts --lower-dtr /dev/ttyUSB0 --imap lfcrlf
test: test_ntc
test_ntc: test/test_ntc.o ntc.o
gcc $^ -o $@ $(LIBS)
clean:
rm -f test/test_ntc.o ntc.o
.PHONY: test all clean

View File

@ -1,64 +1,8 @@
/* Copyright (c) 2025 Rodrigo Arias Mallo <rodarima@gmail.com>
* SPDX-License-Identifier: GPL-3.0-or-later */
/*
* ATmega328p
* +---------+
* (PCINT14/RESET) PC6 -|1 \_/ 28|- PC5 (ADC5/SCL/PCINT13)
* (PCINT16/RXD) PD0 -|2 27|- PC4 (ADC4/SDA/PCINT12)
* (PCINT17/TXD) PD1 -|3 26|- PC3 (ADC3/PCINT11)
* (PCINT18/INT0) PD2 -|4 25|- PC2 (ADC2/PCINT10)
* (PCINT19/OC2B/INT1) PD3 -|5 24|- PC1 (ADC1/PCINT9)
* (PCINT20/XCK/T0) PD4 -|6 23|- PC0 (ADC0/PCINT8)
* VCC -|7 22|- GND
* GND -|8 21|- AREF
* (PCINT6/XTAL1/TOSC1) PB6 -|9 20|- AVCC
* (PCINT7/XTAL2/TOSC2) PB7 -|10 19|- PB5 (SCK/PCINT5)
* (PCINT21/OC0B/T1) PD5 -|11 18|- PB4 (MISO/PCINT4)
* (PCINT22/OC0A/AIN0) PD6 -|12 17|- PB3 (MOSI/OC2A/PCINT3)
* (PCINT23/AIN1) PD7 -|13 16|- PB2 (SS/OC1B/PCINT2)
* (PCINT0/CLKO/ICP1) PB0 -|14 15|- PB1 (OC1A/PCINT1)
* +---------+
*
*
* ATMEL ATMEGA8 & 168 / ARDUINO
*
* +-\/-+
* PC6 1| |28 PC5 (AI 5)
* (D 0) PD0 2| |27 PC4 (AI 4)
* (D 1) PD1 3| |26 PC3 (AI 3)
* (D 2) PD2 4| |25 PC2 (AI 2)
* PWM+ (D 3) PD3 5| |24 PC1 (AI 1)
* (D 4) PD4 6| |23 PC0 (AI 0)
* VCC 7| |22 GND
* GND 8| |21 AREF
* PB6 9| |20 AVCC
* PB7 10| |19 PB5 (D 13)
* PWM+ (D 5) PD5 11| |18 PB4 (D 12)
* PWM+ (D 6) PD6 12| |17 PB3 (D 11) PWM
* (D 7) PD7 13| |16 PB2 (D 10) PWM
* (D 8) PB0 14| |15 PB1 (D 9) PWM
* +----+
*
*
*/
enum pinout {
/* Inputs */
PIN_POWER_ON = 8,
PIN_HOT = 9,
//PIN_FLOW = PIN_D5,
/* Outputs */
PIN_LED_GREEN = 5,
PIN_LED_RED = 6,
PIN_HEAT = 7,
PIN_PUMP = 12,
PIN_BUZZ = 10,
/* Analog */
PIN_NTC = PIN_A0,
};
#include "ntc.h"
#include "pinout.h"
enum logic {
ON = 1,
@ -66,13 +10,13 @@ enum logic {
};
#define DEBOUNCE_TIME 20L /* ms */
#define TEMP_MIN 600
#define TEMP_MAX 700
#define TEMP_MIN 40.0f /* C */
#define TEMP_MAX 50.0f /* C */
#define LED_MIN_VALUE 0
enum state {
SLEEPING,
enum machine_state {
SLEEPING = 0,
DEBOUNCE,
HEATING,
HOT,
@ -80,16 +24,15 @@ enum state {
COOLING,
};
long debounce_t0 = 0;
int state = SLEEPING;
//int state = SLEEPING;
enum button {
BUTTON_ON = 0,
BUTTON_HOT,
MAX_BUTTON,
enum btn_index {
BTN_ON = 0,
BTN_HOT,
MAX_BTN,
};
enum button_state {
enum btn_state {
RESTING = 0,
PRESSING,
PRESSED,
@ -98,21 +41,48 @@ enum button_state {
};
enum buzz_state {
BUZZ_OFF = 0,
BUZZ_HEY,
BUZZ_STOP,
BUZZ_OFF = 0,
BUZZ_HEY,
BUZZ_ACTIVE,
};
int buzz_state;
int button_pin[MAX_BUTTON] = {
[BUTTON_ON] = PIN_POWER_ON,
[BUTTON_HOT] = PIN_HOT,
int button_pin[MAX_BTN] = {
[BTN_ON] = PIN_POWER_ON,
[BTN_HOT] = PIN_HOT,
};
int button_state[MAX_BUTTON];
unsigned long button_press_t0[MAX_BUTTON];
unsigned long button_release_t0[MAX_BUTTON];
struct btn {
enum btn_state state;
unsigned long press_t0;
unsigned long release_t0;
};
struct input {
unsigned long t_ms;
int ntc_V;
enum logic btn[MAX_BTN];
} g_in;
#define MAX_SAMPLES 16
struct state {
enum machine_state mstate;
unsigned long brewing_t0;
unsigned long cooling_t0;
unsigned long heating_t0;
unsigned long hot_t0;
int ntc_i; /* Next available place */
float ntc_R;
float ntc_last_T;
float ntc_array_T[MAX_SAMPLES];
float ntc_T; /* average */
struct btn btn[MAX_BTN];
enum buzz_state buzz_state;
unsigned long buzz_t0;
} g_st;
int read_input(int pin)
{
@ -121,51 +91,79 @@ int read_input(int pin)
void relay(int pin, enum logic st)
{
/* Relays are active low */
if (st == ON)
digitalWrite(pin, 0);
else
digitalWrite(pin, 1);
/* Relays are active low */
if (st == ON)
digitalWrite(pin, 0);
else
digitalWrite(pin, 1);
}
void setled(int pin, enum logic st)
{
/* LEDs are active high */
if (st == ON)
digitalWrite(pin, 1);
else
digitalWrite(pin, 0);
/* LEDs are active high */
if (st == ON)
digitalWrite(pin, 1);
else
digitalWrite(pin, 0);
}
void update_buttons()
void do_input(struct input *input)
{
for (int i = 0; i < MAX_BUTTON; i++) {
int st = button_state[i];
int pin = button_pin[i];
if (st == RESTING) {
if (read_input(pin) == ON) {
button_state[i] = PRESSING;
button_press_t0[i] = millis();
input->t_ms = millis();
/* Read buttons */
for (int i = 0; i < MAX_BTN; i++)
input->btn[i] = read_input(button_pin[i]);
/* Read temperature sensor */
input->ntc_V = analogRead(PIN_NTC);
}
void proc_ntc(struct state *state, const struct input *input)
{
state->ntc_R = ntc_resistance(input->ntc_V);
state->ntc_last_T = ntc_temp(state->ntc_R);
state->ntc_array_T[state->ntc_i++] = state->ntc_last_T;
if (state->ntc_i >= MAX_SAMPLES)
state->ntc_i = 0;
float avg = 0;
for (int i = 0; i < MAX_SAMPLES; i++)
avg += state->ntc_array_T[i];
state->ntc_T = avg / MAX_SAMPLES;
}
void proc_buttons(struct state *state, const struct input *input)
{
for (int i = 0; i < MAX_BTN; i++) {
struct btn *btn = &state->btn[i];
int v = input->btn[i];
if (btn->state == RESTING) {
if (v == ON) {
btn->state = PRESSING;
btn->press_t0 = millis();
}
} else if (st == PRESSING) {
if (read_input(pin) != ON) {
button_state[i] = RESTING;
} else if (millis() - button_press_t0[i] > DEBOUNCE_TIME) {
button_state[i] = PRESSED;
} else if (btn->state == PRESSING) {
if (v != ON) {
btn->state = RESTING;
} else if (millis() - btn->press_t0 > DEBOUNCE_TIME) {
btn->state = PRESSED;
}
} else if (st == PRESSED) {
if (read_input(pin) != ON) {
button_state[i] = RELEASING;
button_release_t0[i] = millis();
} else if (btn->state == PRESSED) {
if (v != ON) {
btn->state = RELEASING;
btn->release_t0 = millis();
}
} else if (st == RELEASING) {
if (read_input(pin) == ON) {
button_state[i] = PRESSED;
} else if (millis() - button_release_t0[i] > DEBOUNCE_TIME) {
button_state[i] = RELEASED;
} else if (btn->state == RELEASING) {
if (v == ON) {
btn->state = PRESSED;
} else if (millis() - btn->release_t0 > DEBOUNCE_TIME) {
btn->state = RELEASED;
}
} else if (st == RELEASED) {
button_state[i] = RESTING;
} else if (btn->state == RELEASED) {
btn->state = RESTING;
}
}
}
@ -174,148 +172,156 @@ int red_min = 50;
int red_state = red_min;
unsigned long brewing_time = 3000UL; /* 3 seconds */
unsigned long cooling_time = 3000UL; /* 3 seconds */
unsigned long max_heating_time = 10000UL; /* 10 seconds */
unsigned long max_heating_time = 60000UL; /* 60 seconds */
unsigned long max_idle_time = 10000UL; /* 10 seconds */
void progress()
void proc_machine(struct state *st)
{
int temp = analogRead(PIN_NTC);
int on = (button_state[BUTTON_ON] == RELEASED);
int hot = (button_state[BUTTON_HOT] == PRESSED);
float temp = st->ntc_T;
int on = (st->btn[BTN_ON].state == RELEASED);
int hot = (st->btn[BTN_HOT].state == PRESSED);
static unsigned long brewing_t0 = 0;
static unsigned long cooling_t0 = 0;
static unsigned long heating_t0 = 0;
static unsigned long hot_t0 = 0;
Serial.print("state=");
Serial.print(state);
Serial.print("t=");
Serial.print(millis());
Serial.print(" state=");
Serial.print(st->mstate);
Serial.print(" on=");
Serial.print(on);
Serial.print(" temp=");
Serial.println(temp);
Serial.print(temp);
Serial.println(" C");
/* Pressing ON cancels any operation */
if (state != SLEEPING && on) {
state = SLEEPING;
return;
}
/* Pressing ON cancels any operation */
if (st->mstate != SLEEPING && on) {
st->mstate = SLEEPING;
st->buzz_state = BUZZ_OFF;
return;
}
if (state == SLEEPING) {
if (st->mstate == SLEEPING) {
if (on) {
state = HEATING;
heating_t0 = millis();
st->mstate = HEATING;
st->heating_t0 = millis();
Serial.println("heating");
}
} else if (state == HEATING) {
if (temp > TEMP_MAX) {
state = HOT;
hot_t0 = millis();
buzz_state = BUZZ_HEY;
Serial.println("hot");
} else if (millis() - heating_t0 > max_heating_time) {
/* TODO: Add alarm state */
state = SLEEPING;
Serial.println("cannot heat, going to sleep");
}
} else if (state == HOT) {
} else if (st->mstate == HEATING) {
if (temp > TEMP_MAX) {
st->mstate = HOT;
st->hot_t0 = millis();
st->buzz_state = BUZZ_HEY;
Serial.println("hot");
} else if (millis() - st->heating_t0 > max_heating_time) {
/* TODO: Add alarm state */
st->mstate = SLEEPING;
Serial.println("cannot heat, going to sleep");
}
} else if (st->mstate == HOT) {
if (hot) {
state = BREWING;
brewing_t0 = millis();
Serial.println("brewing");
} else if (millis() - hot_t0 > max_idle_time) {
state = SLEEPING;
Serial.println("idle timeout, going to sleep");
}
} else if (state == BREWING) {
if (millis() - brewing_t0 > brewing_time) {
state = COOLING;
cooling_t0 = millis();
Serial.println("cooling");
}
} else if (state == COOLING) {
/* TODO: Wait a bit and go back to heating */
if (millis() - cooling_t0 > cooling_time) {
state = HEATING;
heating_t0 = millis();
Serial.println("heating");
}
}
st->mstate = BREWING;
st->brewing_t0 = millis();
Serial.println("brewing");
} else if (millis() - st->hot_t0 > max_idle_time) {
st->mstate = SLEEPING;
Serial.println("idle timeout, going to sleep");
}
} else if (st->mstate == BREWING) {
if (millis() - st->brewing_t0 > brewing_time) {
st->mstate = COOLING;
st->cooling_t0 = millis();
Serial.println("cooling");
}
} else if (st->mstate == COOLING) {
/* TODO: Wait a bit and go back to heating */
if (millis() - st->cooling_t0 > cooling_time) {
st->mstate = HEATING;
st->heating_t0 = millis();
Serial.println("heating");
}
}
}
void
update_leds()
proc_buzz(struct state *st)
{
static int r = 0;
static int g = 0;
if (st->buzz_state == BUZZ_HEY) {
tone(PIN_BUZZ, 1500);
st->buzz_state = BUZZ_ACTIVE;
st->buzz_t0 = millis();
} else if (st->buzz_state == BUZZ_ACTIVE) {
if (millis() - st->buzz_t0 > 20) {
st->buzz_state = BUZZ_OFF;
noTone(PIN_BUZZ);
}
} else {
noTone(PIN_BUZZ);
}
}
if (state == HEATING || state == COOLING) {
analogWrite(PIN_LED_RED, r);
setled(PIN_LED_GREEN, 0);
if (r >= 255)
r = 0;
else
r += 3;
} else if (state == HOT) {
setled(PIN_LED_RED, 0);
setled(PIN_LED_GREEN, 1);
r = 0;
} else if (state == BREWING) {
setled(PIN_LED_RED, 0);
analogWrite(PIN_LED_GREEN, g);
if (g >= 255)
g = 0;
else
g += 3;
} else {
setled(PIN_LED_RED, 0);
setled(PIN_LED_GREEN, 0);
r = 0;
}
void do_proc(struct state *st, const struct input *input)
{
proc_ntc(st, input);
proc_buttons(st, input);
proc_machine(st);
proc_buzz(st);
}
void
update_heater()
output_leds(const struct state *st)
{
if (state == HEATING || state == HOT || state == BREWING) {
int temp = analogRead(PIN_NTC);
if (temp < TEMP_MIN)
relay(PIN_HEAT, ON);
else if (temp > TEMP_MAX)
relay(PIN_HEAT, OFF);
} else {
relay(PIN_HEAT, OFF);
}
static int r = 0;
static int g = 0;
if (st->mstate == HEATING || st->mstate == COOLING) {
analogWrite(PIN_LED_RED, r);
setled(PIN_LED_GREEN, 0);
if (r >= 255)
r = 0;
else
r += 3;
} else if (st->mstate == HOT) {
setled(PIN_LED_RED, 0);
setled(PIN_LED_GREEN, 1);
r = 0;
} else if (st->mstate == BREWING) {
setled(PIN_LED_RED, 0);
analogWrite(PIN_LED_GREEN, g);
if (g >= 255)
g = 0;
else
g += 3;
} else {
setled(PIN_LED_RED, 0);
setled(PIN_LED_GREEN, 0);
r = 0;
}
}
void
update_pump()
output_heater(const struct state *st)
{
if (state == BREWING) {
if (st->mstate == HEATING || st->mstate == HOT || st->mstate == BREWING) {
if (st->ntc_T < TEMP_MIN)
relay(PIN_HEAT, ON);
else if (st->ntc_T > TEMP_MAX)
relay(PIN_HEAT, OFF);
} else {
relay(PIN_HEAT, OFF);
}
}
void
output_pump(const struct state *st)
{
if (st->mstate == BREWING)
relay(PIN_PUMP, ON);
} else {
else
relay(PIN_PUMP, OFF);
}
}
void
update_buzz()
void do_output(const struct state *st)
{
static unsigned long started = 0;
if (buzz_state == BUZZ_HEY) {
tone(PIN_BUZZ, 1500);
if (started == 0)
started = millis();
else if (millis() - started > 20) {
buzz_state = BUZZ_OFF;
}
} else if (buzz_state == BUZZ_STOP) {
tone(PIN_BUZZ, 220);
} else if (buzz_state == BUZZ_OFF) {
noTone(PIN_BUZZ);
started = 0;
}
output_leds(st);
output_heater(st);
}
void setup()
@ -331,21 +337,18 @@ void setup()
pinMode(PIN_HEAT, OUTPUT);
pinMode(PIN_PUMP, OUTPUT);
/* Turn all relays off */
relay(PIN_HEAT, OFF);
relay(PIN_PUMP, OFF);
/* Turn all relays off */
relay(PIN_HEAT, OFF);
relay(PIN_PUMP, OFF);
Serial.println("Ready");
}
void loop()
{
//Serial.println("Looping...");
update_buttons();
progress();
update_leds();
update_heater();
update_pump();
update_buzz();
delay(5);
do_input(&g_in);
do_proc(&g_st, &g_in);
do_output(&g_st);
delay(5);
}

44
barista/ntc.c Normal file
View File

@ -0,0 +1,44 @@
/* Copyright (c) 2025 Rodrigo Arias Mallo <rodarima@gmail.com>
* SPDX-License-Identifier: GPL-3.0-or-later */
#include <math.h>
/* Steinhart-Hart Thermistor Coefficients, used to convert resistance into
* temperature.
*
* The current NTC sensor has 102kOhm at 24C but I don't know the specific
* model, so the coefficients are computed for this NTC sensor instead:
* https://www.tme.eu/Document/f9d2f5e38227fc1c7d979e546ff51768/NTCM-100K-B3950.pdf
*
* The table seems to match what I would expect. Their R2 resistor is 6.8 kOhm,
* which yields a cuttof temperature of around 98.5 C at exactly half voltage
* (where the ADC would have more precision).
*
* In any case, we can calibrate the original NTC sensor by taking three
* temperature points. See:
* https://www.thinksrs.com/downloads/programs/therm%20calc/ntccalibrator/ntccalculator.html
*/
#define C1 0.7740577674e-3
#define C2 2.073449619e-4
#define C3 1.263502259e-7
/* Return the temperature in celsisus */
float
ntc_temp(float R)
{
/* Computing the log is slow, we may want to build a table */
float logR = log(R);
float T = (1.0 / (C1 + C2*logR + C3*logR*logR*logR));
float Tc = T - 273.15;
return Tc;
}
/* Return resistance in Ohms */
float
ntc_resistance(int Vo)
{
float R1 = 10.0e3; /* Resistor for voltage divider */
float R2 = R1 * (1023.0 / (float)Vo - 1.0);
return R2;
}

18
barista/ntc.h Normal file
View File

@ -0,0 +1,18 @@
/* Copyright (c) 2025 Rodrigo Arias Mallo <rodarima@gmail.com>
* SPDX-License-Identifier: GPL-3.0-or-later */
#ifndef BARISTA_NTC_H
#define BARISTA_NTC_H
#ifdef __cplusplus
extern "C" {
#endif
float ntc_resistance(int Vo);
float ntc_temp(float omhs);
#ifdef __cplusplus
}
#endif
#endif /* BARISTA_NTC_H */

78
barista/pinout.h Normal file
View File

@ -0,0 +1,78 @@
/* Copyright (c) 2025 Rodrigo Arias Mallo <rodarima@gmail.com>
* SPDX-License-Identifier: GPL-3.0-or-later */
#ifndef BARISTA_PINOUT_H
#define BARISTA_PINOUT_H
#include <Arduino.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* ATmega328p
* +---------+
* (PCINT14/RESET) PC6 -|1 \_/ 28|- PC5 (ADC5/SCL/PCINT13)
* (PCINT16/RXD) PD0 -|2 27|- PC4 (ADC4/SDA/PCINT12)
* (PCINT17/TXD) PD1 -|3 26|- PC3 (ADC3/PCINT11)
* (PCINT18/INT0) PD2 -|4 25|- PC2 (ADC2/PCINT10)
* (PCINT19/OC2B/INT1) PD3 -|5 24|- PC1 (ADC1/PCINT9)
* (PCINT20/XCK/T0) PD4 -|6 23|- PC0 (ADC0/PCINT8)
* VCC -|7 22|- GND
* GND -|8 21|- AREF
* (PCINT6/XTAL1/TOSC1) PB6 -|9 20|- AVCC
* (PCINT7/XTAL2/TOSC2) PB7 -|10 19|- PB5 (SCK/PCINT5)
* (PCINT21/OC0B/T1) PD5 -|11 18|- PB4 (MISO/PCINT4)
* (PCINT22/OC0A/AIN0) PD6 -|12 17|- PB3 (MOSI/OC2A/PCINT3)
* (PCINT23/AIN1) PD7 -|13 16|- PB2 (SS/OC1B/PCINT2)
* (PCINT0/CLKO/ICP1) PB0 -|14 15|- PB1 (OC1A/PCINT1)
* +---------+
*
*
* ATMEL ATMEGA8 & 168 / ARDUINO
*
* +-\/-+
* PC6 1| |28 PC5 (AI 5)
* (D 0) PD0 2| |27 PC4 (AI 4)
* (D 1) PD1 3| |26 PC3 (AI 3)
* (D 2) PD2 4| |25 PC2 (AI 2)
* PWM+ (D 3) PD3 5| |24 PC1 (AI 1)
* (D 4) PD4 6| |23 PC0 (AI 0)
* VCC 7| |22 GND
* GND 8| |21 AREF
* PB6 9| |20 AVCC
* PB7 10| |19 PB5 (D 13)
* PWM+ (D 5) PD5 11| |18 PB4 (D 12)
* PWM+ (D 6) PD6 12| |17 PB3 (D 11) PWM
* (D 7) PD7 13| |16 PB2 (D 10) PWM
* (D 8) PB0 14| |15 PB1 (D 9) PWM
* +----+
*
*
*/
enum pinout {
/* Inputs */
PIN_POWER_ON = 8,
PIN_HOT = 9,
//PIN_FLOW = PIN_D5,
/* Outputs */
PIN_LED_GREEN = 5,
PIN_LED_RED = 6,
PIN_HEAT = 7,
PIN_PUMP = 12,
PIN_BUZZ = 10,
/* Analog */
PIN_NTC = PIN_A0,
};
#ifdef __cplusplus
}
#endif
#endif /* BARISTA_PINOUT_H */

1
barista/test/Makefile Normal file
View File

@ -0,0 +1 @@
test_ntc: test_ntc.o ../ntc.c

15
barista/test/test_ntc.c Normal file
View File

@ -0,0 +1,15 @@
#include <stdio.h>
#include "ntc.h"
int main(void)
{
for (int i = 0; i <= 1023; i++) {
float R = ntc_resistance(i);
float T = ntc_temp(R);
if (T < 96.0 || T > 100.2)
continue;
printf("%6d %12.1f Ohm %12.1f C\n", i, R, T);
}
return 0;
}