saiph: update granularity experiment and R script

This commit is contained in:
Rodrigo Arias 2021-02-23 12:13:52 +01:00
parent 37e11c749f
commit e0fbbe32a6
2 changed files with 107 additions and 7 deletions

View File

@ -42,7 +42,7 @@ png("box.png", width=w*ppi, height=h*ppi, res=ppi)
p = ggplot(data=D, aes(x=nby, y=tnorm, color=bad)) +
# Labels
labs(x="nby", y="Normalized time",
labs(x="nb{y-z}", y="Normalized time",
title=sprintf("Saiph-Heat3D normalized time"),
subtitle=input_file) +
@ -82,16 +82,16 @@ png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
## Create the plot with the normalized time vs nblocks
p = ggplot(D, aes(x=nby, y=time)) +
labs(x="nby", y="Time (s)",
title=sprintf("Saiph-Heat3D granularity"),
subtitle=input_file) +
labs(x="nb{y-z}", y="Time (s)",
title=sprintf("Saiph-Heat3D granularity"),
subtitle=input_file) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = c(0.5, 0.88)) +
geom_point(shape=21, size=3) +
#scale_x_continuous(trans=log2_trans()) +
scale_y_continuous(trans=log2_trans())
geom_point(shape=21, size=3)
#+ scale_x_continuous(trans=log2_trans())
#+ scale_y_continuous(trans=log2_trans())
# Render the plot
print(p)

View File

@ -0,0 +1,100 @@
library(ggplot2)
library(dplyr)
library(scales)
library(jsonlite)
args=commandArgs(trailingOnly=TRUE)
# Read the timetable from args[1]
input_file = "nov24Gran.json"
if (length(args)>0) { input_file = args[1] }
# Load the dataset in NDJSON format
dataset = jsonlite::stream_in(file(input_file)) %>%
jsonlite::flatten()
# We only need the nblocks and time
df = select(dataset, config.nby, time) %>%
rename(nby=config.nby)
df$nby = as.factor(df$nby)
# Normalize the time by the median
D=group_by(df, nby) %>%
mutate(tnorm = time / median(time) - 1) %>%
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0)))
D$bad = as.factor(D$bad)
print(D)
ppi=300
h=5
w=5
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
#
#
#
# Create the plot with the normalized time vs nblocks
p = ggplot(data=D, aes(x=nby, y=tnorm, color=bad)) +
# Labels
labs(x="nb{y-z}", y="Normalized time",
title=sprintf("Saiph-Heat3D normalized time"),
subtitle=input_file) +
# Center the title
#theme(plot.title = element_text(hjust = 0.5)) +
# Black and white mode (useful for printing)
#theme_bw() +
# Add the maximum allowed error lines
geom_hline(yintercept=c(-0.01, 0.01),
linetype="dashed", color="gray") +
# Draw boxplots
geom_boxplot() +
scale_color_manual(values=c("black", "brown")) +
#scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = "none")
#theme(legend.position = c(0.85, 0.85))
# Render the plot
print(p)
## Save the png image
dev.off()
#
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
#
## Create the plot with the normalized time vs nblocks
p = ggplot(D, aes(x=nby, y=time)) +
labs(x="nb{y-z}", y="Time (s)",
title=sprintf("Saiph-Heat3D granularity"),
subtitle=input_file) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = c(0.5, 0.88)) +
geom_point(shape=21, size=3) +
#scale_x_continuous(trans=log2_trans()) +
scale_y_continuous(trans=log2_trans())
# Render the plot
print(p)
# Save the png image
dev.off()