hpcg: add plot for oss experiment
This commit is contained in:
parent
9d878eeb4a
commit
dd0823876a
102
garlic/fig/hpcg/oss.R
Normal file
102
garlic/fig/hpcg/oss.R
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
library(ggplot2)
|
||||||
|
library(dplyr)
|
||||||
|
library(scales)
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
args=commandArgs(trailingOnly=TRUE)
|
||||||
|
|
||||||
|
# Read the timetable from args[1]
|
||||||
|
input_file = "input.json"
|
||||||
|
if (length(args)>0) { input_file = args[1] }
|
||||||
|
|
||||||
|
# Load the dataset in NDJSON format
|
||||||
|
dataset = jsonlite::stream_in(file(input_file)) %>%
|
||||||
|
jsonlite::flatten()
|
||||||
|
|
||||||
|
particles = unique(dataset$config.particles)
|
||||||
|
|
||||||
|
# We only need the nblocks and time
|
||||||
|
df = select(dataset, config.nblocks, config.hw.cpusPerSocket, time) %>%
|
||||||
|
rename(nblocks=config.nblocks,
|
||||||
|
cpusPerSocket=config.hw.cpusPerSocket)
|
||||||
|
|
||||||
|
df = df %>% mutate(blocksPerCpu = nblocks / cpusPerSocket)
|
||||||
|
df$nblocks = as.factor(df$nblocks)
|
||||||
|
df$blocksPerCpuFactor = as.factor(df$blocksPerCpu)
|
||||||
|
|
||||||
|
# Normalize the time by the median
|
||||||
|
D=group_by(df, nblocks) %>%
|
||||||
|
mutate(tnorm = time / median(time) - 1)
|
||||||
|
|
||||||
|
bs_unique = unique(df$nblocks)
|
||||||
|
nbs=length(bs_unique)
|
||||||
|
|
||||||
|
print(D)
|
||||||
|
|
||||||
|
ppi=300
|
||||||
|
h=5
|
||||||
|
w=5
|
||||||
|
|
||||||
|
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(data=D, aes(x=blocksPerCpuFactor, y=tnorm)) +
|
||||||
|
|
||||||
|
# Labels
|
||||||
|
labs(x="Num blocks", y="Normalized time",
|
||||||
|
title="HPCG normalized time",
|
||||||
|
subtitle=input_file) +
|
||||||
|
|
||||||
|
# Center the title
|
||||||
|
#theme(plot.title = element_text(hjust = 0.5)) +
|
||||||
|
|
||||||
|
# Black and white mode (useful for printing)
|
||||||
|
#theme_bw() +
|
||||||
|
|
||||||
|
# Add the maximum allowed error lines
|
||||||
|
geom_hline(yintercept=c(-0.01, 0.01),
|
||||||
|
linetype="dashed", color="red") +
|
||||||
|
|
||||||
|
# Draw boxplots
|
||||||
|
geom_boxplot() +
|
||||||
|
|
||||||
|
#scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
|
||||||
|
|
||||||
|
theme_bw() +
|
||||||
|
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
|
||||||
|
theme(legend.position = c(0.85, 0.85)) #+
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
## Save the png image
|
||||||
|
dev.off()
|
||||||
|
#
|
||||||
|
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
## Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(D, aes(x=blocksPerCpuFactor, y=time)) +
|
||||||
|
|
||||||
|
labs(x="Blocks/CPU", y="Time (s)",
|
||||||
|
title="HPCG granularity",
|
||||||
|
subtitle=input_file) +
|
||||||
|
theme_bw() +
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = c(0.5, 0.88)) +
|
||||||
|
|
||||||
|
geom_point(shape=21, size=3) +
|
||||||
|
#scale_x_continuous(trans=log2_trans()) +
|
||||||
|
scale_y_continuous(trans=log2_trans())
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
# Save the png image
|
||||||
|
dev.off()
|
@ -384,6 +384,12 @@ let
|
|||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
|
hpcg = {
|
||||||
|
oss = with ds.hpcg; pp.rPlot {
|
||||||
|
script = ./garlic/fig/hpcg/oss.R;
|
||||||
|
dataset = oss;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
heat = {
|
heat = {
|
||||||
test = with ds.heat; pp.rPlot {
|
test = with ds.heat; pp.rPlot {
|
||||||
|
Loading…
Reference in New Issue
Block a user