saiph: add figures for blocking experiment
This commit is contained in:
parent
a2306eb941
commit
0ac0205366
100
garlic/fig/saiph/blocking.R
Normal file
100
garlic/fig/saiph/blocking.R
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
library(ggplot2)
|
||||||
|
library(dplyr)
|
||||||
|
library(scales)
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
args=commandArgs(trailingOnly=TRUE)
|
||||||
|
|
||||||
|
# Read the timetable from args[1]
|
||||||
|
input_file = "input.json"
|
||||||
|
if (length(args)>0) { input_file = args[1] }
|
||||||
|
|
||||||
|
# Load the dataset in NDJSON format
|
||||||
|
dataset = jsonlite::stream_in(file(input_file)) %>%
|
||||||
|
jsonlite::flatten()
|
||||||
|
|
||||||
|
|
||||||
|
# We only need the nblocks and time
|
||||||
|
df = select(dataset, config.nby, time) %>%
|
||||||
|
rename(nby=config.nby)
|
||||||
|
|
||||||
|
df$nby = as.factor(df$nby)
|
||||||
|
|
||||||
|
# Normalize the time by the median
|
||||||
|
D=group_by(df, nby) %>%
|
||||||
|
mutate(tnorm = time / median(time) - 1) %>%
|
||||||
|
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0)))
|
||||||
|
|
||||||
|
D$bad = as.factor(D$bad)
|
||||||
|
|
||||||
|
|
||||||
|
print(D)
|
||||||
|
|
||||||
|
ppi=300
|
||||||
|
h=5
|
||||||
|
w=5
|
||||||
|
|
||||||
|
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(data=D, aes(x=nby, y=tnorm, color=bad)) +
|
||||||
|
|
||||||
|
# Labels
|
||||||
|
labs(x="nb{y-z}", y="Normalized time",
|
||||||
|
title=sprintf("Saiph-Heat3D normalized time"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
|
||||||
|
# Center the title
|
||||||
|
#theme(plot.title = element_text(hjust = 0.5)) +
|
||||||
|
|
||||||
|
# Black and white mode (useful for printing)
|
||||||
|
#theme_bw() +
|
||||||
|
|
||||||
|
# Add the maximum allowed error lines
|
||||||
|
geom_hline(yintercept=c(-0.01, 0.01),
|
||||||
|
linetype="dashed", color="gray") +
|
||||||
|
|
||||||
|
# Draw boxplots
|
||||||
|
geom_boxplot() +
|
||||||
|
scale_color_manual(values=c("black", "brown")) +
|
||||||
|
|
||||||
|
#scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
|
||||||
|
|
||||||
|
theme_bw() +
|
||||||
|
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = "none")
|
||||||
|
#theme(legend.position = c(0.85, 0.85))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
## Save the png image
|
||||||
|
dev.off()
|
||||||
|
#
|
||||||
|
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
## Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(D, aes(x=nby, y=time)) +
|
||||||
|
|
||||||
|
labs(x="nb{y-z}", y="Time (s)",
|
||||||
|
title=sprintf("Saiph-Heat3D blocking-granularity"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
theme_bw() +
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = c(0.5, 0.88)) +
|
||||||
|
|
||||||
|
geom_point(shape=21, size=3) +
|
||||||
|
#scale_x_continuous(trans=log2_trans()) +
|
||||||
|
scale_y_continuous(trans=log2_trans())
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
# Save the png image
|
||||||
|
dev.off()
|
77
garlic/fig/saiph/blockingY_blocking_Z.R
Normal file
77
garlic/fig/saiph/blockingY_blocking_Z.R
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
library(ggplot2)
|
||||||
|
library(dplyr)
|
||||||
|
library(scales)
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
args=commandArgs(trailingOnly=TRUE)
|
||||||
|
|
||||||
|
# Read the timetable from args[1]
|
||||||
|
input_file = "input1.json"
|
||||||
|
if (length(args)>0) { input_file = args[1] }
|
||||||
|
|
||||||
|
input_file2 = "input2.json"
|
||||||
|
if (length(args)>0) { input_file2 = args[1] }
|
||||||
|
|
||||||
|
# Load the dataset in NDJSON format
|
||||||
|
dataset = jsonlite::stream_in(file(input_file)) %>%
|
||||||
|
jsonlite::flatten()
|
||||||
|
|
||||||
|
dataset2 = jsonlite::stream_in(file(input_file2)) %>%
|
||||||
|
jsonlite::flatten()
|
||||||
|
|
||||||
|
|
||||||
|
# We only need the nblocks and time
|
||||||
|
df = select(dataset, config.nby, time) %>%
|
||||||
|
rename(nby=config.nby)
|
||||||
|
|
||||||
|
df$nby = as.factor(df$nby)
|
||||||
|
|
||||||
|
df2 = select(dataset2, config.nbz, time) %>%
|
||||||
|
rename(nbz=config.nbz)
|
||||||
|
|
||||||
|
df2$nbz = as.factor(df2$nbz)
|
||||||
|
|
||||||
|
|
||||||
|
# Normalize the time by the median
|
||||||
|
D=group_by(df, nby) %>%
|
||||||
|
mutate(tnorm = time / median(time) - 1) %>%
|
||||||
|
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0)))
|
||||||
|
|
||||||
|
D$bad = as.factor(D$bad)
|
||||||
|
|
||||||
|
|
||||||
|
print(D)
|
||||||
|
|
||||||
|
D2=group_by(df2, nbz) %>%
|
||||||
|
mutate(tnorm = time / median(time) - 1) %>%
|
||||||
|
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0)))
|
||||||
|
|
||||||
|
D2$bad = as.factor(D2$bad)
|
||||||
|
|
||||||
|
print(D)
|
||||||
|
print(D2)
|
||||||
|
|
||||||
|
png("scatter-blockY8Z_yZ8.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
## Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot() +
|
||||||
|
geom_point(data=D, aes(x=nby, y=time, colour="nby blocks - nbz = 8"), shape=1, size=3) +
|
||||||
|
geom_point(data=D2, aes(x=nbz, y=time, colour="nby = 8 - nbz blocks"), shape=1, size=3) +
|
||||||
|
|
||||||
|
labs(x="nb", y="Time (s)",
|
||||||
|
title=sprintf("Saiph-Heat3D blockingY/Z"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
theme_bw() +
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = "right") +
|
||||||
|
|
||||||
|
geom_point(shape=21, size=3) +
|
||||||
|
scale_colour_discrete("Blocked directions")
|
||||||
|
#+ scale_x_continuous(trans=log2_trans())
|
||||||
|
#+ scale_y_continuous(trans=log2_trans())
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
# Save the png image
|
||||||
|
dev.off()
|
100
garlic/fig/saiph/blocking_Y.R
Normal file
100
garlic/fig/saiph/blocking_Y.R
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
library(ggplot2)
|
||||||
|
library(dplyr)
|
||||||
|
library(scales)
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
args=commandArgs(trailingOnly=TRUE)
|
||||||
|
|
||||||
|
# Read the timetable from args[1]
|
||||||
|
input_file = "input.json"
|
||||||
|
if (length(args)>0) { input_file = args[1] }
|
||||||
|
|
||||||
|
# Load the dataset in NDJSON format
|
||||||
|
dataset = jsonlite::stream_in(file(input_file)) %>%
|
||||||
|
jsonlite::flatten()
|
||||||
|
|
||||||
|
|
||||||
|
# We only need the nblocks and time
|
||||||
|
df = select(dataset, config.nby, time) %>%
|
||||||
|
rename(nby=config.nby)
|
||||||
|
|
||||||
|
df$nby = as.factor(df$nby)
|
||||||
|
|
||||||
|
# Normalize the time by the median
|
||||||
|
D=group_by(df, nby) %>%
|
||||||
|
mutate(tnorm = time / median(time) - 1) %>%
|
||||||
|
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0)))
|
||||||
|
|
||||||
|
D$bad = as.factor(D$bad)
|
||||||
|
|
||||||
|
|
||||||
|
print(D)
|
||||||
|
|
||||||
|
ppi=300
|
||||||
|
h=5
|
||||||
|
w=5
|
||||||
|
|
||||||
|
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(data=D, aes(x=nby, y=tnorm, color=bad)) +
|
||||||
|
|
||||||
|
# Labels
|
||||||
|
labs(x="nby", y="Normalized time",
|
||||||
|
title=sprintf("Saiph-Heat3D normalized time"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
|
||||||
|
# Center the title
|
||||||
|
#theme(plot.title = element_text(hjust = 0.5)) +
|
||||||
|
|
||||||
|
# Black and white mode (useful for printing)
|
||||||
|
#theme_bw() +
|
||||||
|
|
||||||
|
# Add the maximum allowed error lines
|
||||||
|
geom_hline(yintercept=c(-0.01, 0.01),
|
||||||
|
linetype="dashed", color="gray") +
|
||||||
|
|
||||||
|
# Draw boxplots
|
||||||
|
geom_boxplot() +
|
||||||
|
scale_color_manual(values=c("black", "brown")) +
|
||||||
|
|
||||||
|
#scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
|
||||||
|
|
||||||
|
theme_bw() +
|
||||||
|
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = "none")
|
||||||
|
#theme(legend.position = c(0.85, 0.85))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
## Save the png image
|
||||||
|
dev.off()
|
||||||
|
#
|
||||||
|
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
## Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(D, aes(x=nby, y=time)) +
|
||||||
|
|
||||||
|
labs(x="nby", y="Time (s)",
|
||||||
|
title=sprintf("Saiph-Heat3D blockingY"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
theme_bw() +
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = c(0.5, 0.88)) +
|
||||||
|
|
||||||
|
geom_point(shape=21, size=3)
|
||||||
|
#+ scale_x_continuous(trans=log2_trans())
|
||||||
|
#+ scale_y_continuous(trans=log2_trans())
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
# Save the png image
|
||||||
|
dev.off()
|
100
garlic/fig/saiph/blocking_YZ.R
Normal file
100
garlic/fig/saiph/blocking_YZ.R
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
library(ggplot2)
|
||||||
|
library(dplyr)
|
||||||
|
library(scales)
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
args=commandArgs(trailingOnly=TRUE)
|
||||||
|
|
||||||
|
# Read the timetable from args[1]
|
||||||
|
input_file = "input.json"
|
||||||
|
if (length(args)>0) { input_file = args[1] }
|
||||||
|
|
||||||
|
# Load the dataset in NDJSON format
|
||||||
|
dataset = jsonlite::stream_in(file(input_file)) %>%
|
||||||
|
jsonlite::flatten()
|
||||||
|
|
||||||
|
|
||||||
|
# We only need the nblocks and time
|
||||||
|
df = select(dataset, config.nbz, time) %>%
|
||||||
|
rename(nbz=config.nbz)
|
||||||
|
|
||||||
|
df$nbz = as.factor(df$nbz)
|
||||||
|
|
||||||
|
# Normalize the time by the median
|
||||||
|
D=group_by(df, nbz) %>%
|
||||||
|
mutate(tnorm = time / median(time) - 1) %>%
|
||||||
|
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0)))
|
||||||
|
|
||||||
|
D$bad = as.factor(D$bad)
|
||||||
|
|
||||||
|
|
||||||
|
print(D)
|
||||||
|
|
||||||
|
ppi=300
|
||||||
|
h=5
|
||||||
|
w=5
|
||||||
|
|
||||||
|
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(data=D, aes(x=nbz, y=tnorm, color=bad)) +
|
||||||
|
|
||||||
|
# Labels
|
||||||
|
labs(x="nbz", y="Normalized time",
|
||||||
|
title=sprintf("Saiph-Heat3D normalized time - nby = 8"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
|
||||||
|
# Center the title
|
||||||
|
#theme(plot.title = element_text(hjust = 0.5)) +
|
||||||
|
|
||||||
|
# Black and white mode (useful for printing)
|
||||||
|
#theme_bw() +
|
||||||
|
|
||||||
|
# Add the maximum allowed error lines
|
||||||
|
geom_hline(yintercept=c(-0.01, 0.01),
|
||||||
|
linetype="dashed", color="gray") +
|
||||||
|
|
||||||
|
# Draw boxplots
|
||||||
|
geom_boxplot() +
|
||||||
|
scale_color_manual(values=c("black", "brown")) +
|
||||||
|
|
||||||
|
#scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
|
||||||
|
|
||||||
|
theme_bw() +
|
||||||
|
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = "none")
|
||||||
|
#theme(legend.position = c(0.85, 0.85))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
## Save the png image
|
||||||
|
dev.off()
|
||||||
|
#
|
||||||
|
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
## Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(D, aes(x=nbz, y=time)) +
|
||||||
|
|
||||||
|
labs(x="nbz", y="Time (s)",
|
||||||
|
title=sprintf("Saiph-Heat3D blockingZ - nby = 8"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
theme_bw() +
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = c(0.5, 0.88)) +
|
||||||
|
|
||||||
|
geom_point(shape=21, size=3)
|
||||||
|
#+ scale_x_continuous(trans=log2_trans())
|
||||||
|
#+ scale_y_continuous(trans=log2_trans())
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
# Save the png image
|
||||||
|
dev.off()
|
100
garlic/fig/saiph/blocking_Z.R
Normal file
100
garlic/fig/saiph/blocking_Z.R
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
library(ggplot2)
|
||||||
|
library(dplyr)
|
||||||
|
library(scales)
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
args=commandArgs(trailingOnly=TRUE)
|
||||||
|
|
||||||
|
# Read the timetable from args[1]
|
||||||
|
input_file = "input.json"
|
||||||
|
if (length(args)>0) { input_file = args[1] }
|
||||||
|
|
||||||
|
# Load the dataset in NDJSON format
|
||||||
|
dataset = jsonlite::stream_in(file(input_file)) %>%
|
||||||
|
jsonlite::flatten()
|
||||||
|
|
||||||
|
|
||||||
|
# We only need the nblocks and time
|
||||||
|
df = select(dataset, config.nbz, time) %>%
|
||||||
|
rename(nbz=config.nbz)
|
||||||
|
|
||||||
|
df$nbz = as.factor(df$nbz)
|
||||||
|
|
||||||
|
# Normalize the time by the median
|
||||||
|
D=group_by(df, nbz) %>%
|
||||||
|
mutate(tnorm = time / median(time) - 1) %>%
|
||||||
|
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0)))
|
||||||
|
|
||||||
|
D$bad = as.factor(D$bad)
|
||||||
|
|
||||||
|
|
||||||
|
print(D)
|
||||||
|
|
||||||
|
ppi=300
|
||||||
|
h=5
|
||||||
|
w=5
|
||||||
|
|
||||||
|
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(data=D, aes(x=nbz, y=tnorm, color=bad)) +
|
||||||
|
|
||||||
|
# Labels
|
||||||
|
labs(x="nbz", y="Normalized time",
|
||||||
|
title=sprintf("Saiph-Heat3D normalized time"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
|
||||||
|
# Center the title
|
||||||
|
#theme(plot.title = element_text(hjust = 0.5)) +
|
||||||
|
|
||||||
|
# Black and white mode (useful for printing)
|
||||||
|
#theme_bw() +
|
||||||
|
|
||||||
|
# Add the maximum allowed error lines
|
||||||
|
geom_hline(yintercept=c(-0.01, 0.01),
|
||||||
|
linetype="dashed", color="gray") +
|
||||||
|
|
||||||
|
# Draw boxplots
|
||||||
|
geom_boxplot() +
|
||||||
|
scale_color_manual(values=c("black", "brown")) +
|
||||||
|
|
||||||
|
#scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
|
||||||
|
|
||||||
|
theme_bw() +
|
||||||
|
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = "none")
|
||||||
|
#theme(legend.position = c(0.85, 0.85))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
## Save the png image
|
||||||
|
dev.off()
|
||||||
|
#
|
||||||
|
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
## Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(D, aes(x=nbz, y=time)) +
|
||||||
|
|
||||||
|
labs(x="nbz", y="Time (s)",
|
||||||
|
title=sprintf("Saiph-Heat3D blockingZ"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
theme_bw() +
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = c(0.5, 0.88)) +
|
||||||
|
|
||||||
|
geom_point(shape=21, size=3)
|
||||||
|
#+ scale_x_continuous(trans=log2_trans())
|
||||||
|
#+ scale_y_continuous(trans=log2_trans())
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
# Save the png image
|
||||||
|
dev.off()
|
100
garlic/fig/saiph/blocking_ZY.R
Normal file
100
garlic/fig/saiph/blocking_ZY.R
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
library(ggplot2)
|
||||||
|
library(dplyr)
|
||||||
|
library(scales)
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
args=commandArgs(trailingOnly=TRUE)
|
||||||
|
|
||||||
|
# Read the timetable from args[1]
|
||||||
|
input_file = "input.json"
|
||||||
|
if (length(args)>0) { input_file = args[1] }
|
||||||
|
|
||||||
|
# Load the dataset in NDJSON format
|
||||||
|
dataset = jsonlite::stream_in(file(input_file)) %>%
|
||||||
|
jsonlite::flatten()
|
||||||
|
|
||||||
|
|
||||||
|
# We only need the nblocks and time
|
||||||
|
df = select(dataset, config.nby, time) %>%
|
||||||
|
rename(nby=config.nby)
|
||||||
|
|
||||||
|
df$nby = as.factor(df$nby)
|
||||||
|
|
||||||
|
# Normalize the time by the median
|
||||||
|
D=group_by(df, nby) %>%
|
||||||
|
mutate(tnorm = time / median(time) - 1) %>%
|
||||||
|
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0)))
|
||||||
|
|
||||||
|
D$bad = as.factor(D$bad)
|
||||||
|
|
||||||
|
|
||||||
|
print(D)
|
||||||
|
|
||||||
|
ppi=300
|
||||||
|
h=5
|
||||||
|
w=5
|
||||||
|
|
||||||
|
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(data=D, aes(x=nby, y=tnorm, color=bad)) +
|
||||||
|
|
||||||
|
# Labels
|
||||||
|
labs(x="nby", y="Normalized time",
|
||||||
|
title=sprintf("Saiph-Heat3D normalized time - nbz = 8"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
|
||||||
|
# Center the title
|
||||||
|
#theme(plot.title = element_text(hjust = 0.5)) +
|
||||||
|
|
||||||
|
# Black and white mode (useful for printing)
|
||||||
|
#theme_bw() +
|
||||||
|
|
||||||
|
# Add the maximum allowed error lines
|
||||||
|
geom_hline(yintercept=c(-0.01, 0.01),
|
||||||
|
linetype="dashed", color="gray") +
|
||||||
|
|
||||||
|
# Draw boxplots
|
||||||
|
geom_boxplot() +
|
||||||
|
scale_color_manual(values=c("black", "brown")) +
|
||||||
|
|
||||||
|
#scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
|
||||||
|
|
||||||
|
theme_bw() +
|
||||||
|
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = "none")
|
||||||
|
#theme(legend.position = c(0.85, 0.85))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
## Save the png image
|
||||||
|
dev.off()
|
||||||
|
#
|
||||||
|
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
## Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(D, aes(x=nby, y=time)) +
|
||||||
|
|
||||||
|
labs(x="nby", y="Time (s)",
|
||||||
|
title=sprintf("Saiph-Heat3D blockingY - nbz = 8"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
theme_bw() +
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = c(0.5, 0.88)) +
|
||||||
|
|
||||||
|
geom_point(shape=21, size=3)
|
||||||
|
#+ scale_x_continuous(trans=log2_trans())
|
||||||
|
#+ scale_y_continuous(trans=log2_trans())
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
# Save the png image
|
||||||
|
dev.off()
|
67
garlic/fig/saiph/granBlock.R
Normal file
67
garlic/fig/saiph/granBlock.R
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
library(ggplot2)
|
||||||
|
library(dplyr)
|
||||||
|
library(scales)
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
args=commandArgs(trailingOnly=TRUE)
|
||||||
|
|
||||||
|
# Read the timetable from args[1]
|
||||||
|
input_file1 = "input1.json"
|
||||||
|
if (length(args)>0) { input_file1 = args[1] }
|
||||||
|
|
||||||
|
input_file2 = "input2.json"
|
||||||
|
if (length(args)>1) { input_file2 = args[2] }
|
||||||
|
|
||||||
|
# Load the dataset in NDJSON format
|
||||||
|
dataset1 = jsonlite::stream_in(file(input_file1)) %>%
|
||||||
|
jsonlite::flatten()
|
||||||
|
dataset2 = jsonlite::stream_in(file(input_file2)) %>%
|
||||||
|
jsonlite::flatten()
|
||||||
|
|
||||||
|
# We only need the nblocks and time
|
||||||
|
df1 = select(dataset1, config.nbx, time) %>%
|
||||||
|
rename(nb1=config.nbx)
|
||||||
|
|
||||||
|
df2 = select(dataset2, config.nby, time) %>%
|
||||||
|
rename(nb2=config.nby)
|
||||||
|
|
||||||
|
df1$nb1 = as.factor(df1$nb1)
|
||||||
|
df2$nb2 = as.factor(df2$nb2)
|
||||||
|
|
||||||
|
# Normalize the time by the median
|
||||||
|
D1=group_by(df1, nb1)
|
||||||
|
D2=group_by(df2, nb2)
|
||||||
|
|
||||||
|
print(D1)
|
||||||
|
print(D2)
|
||||||
|
|
||||||
|
ppi=300
|
||||||
|
h=5
|
||||||
|
w=7
|
||||||
|
|
||||||
|
png("scatter_granularity_and_blocking.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
## Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot() +
|
||||||
|
geom_point(data=D1, aes(x=nb1, y=time, colour = 'nbx-nby-nbz'), shape=1, size=4) +
|
||||||
|
geom_point(data=D2, aes(x=nb2, y=time, colour = 'nby-nbz'), shape=1, size=4) +
|
||||||
|
|
||||||
|
labs(x="nb", y="Time (s)",
|
||||||
|
title=sprintf("Saiph-Heat3D granularity & blocking"),
|
||||||
|
subtitle=input_file1) +
|
||||||
|
theme_bw() +
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
#theme(legend.position = c(0.5, 0.88)) +
|
||||||
|
theme(legend.position = "right") +
|
||||||
|
|
||||||
|
geom_point(shape=21, size=3) +
|
||||||
|
#scale_x_continuous(trans=log2_trans()) +
|
||||||
|
scale_y_continuous(trans=log2_trans()) +
|
||||||
|
scale_colour_discrete("Blocked directions")
|
||||||
|
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
# Save the png image
|
||||||
|
dev.off()
|
100
garlic/fig/saiph/strongScaling.R
Normal file
100
garlic/fig/saiph/strongScaling.R
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
library(ggplot2)
|
||||||
|
library(dplyr)
|
||||||
|
library(scales)
|
||||||
|
library(jsonlite)
|
||||||
|
|
||||||
|
args=commandArgs(trailingOnly=TRUE)
|
||||||
|
|
||||||
|
# Read the timetable from args[1]
|
||||||
|
input_file = "input.json"
|
||||||
|
if (length(args)>0) { input_file = args[1] }
|
||||||
|
|
||||||
|
# Load the dataset in NDJSON format
|
||||||
|
dataset = jsonlite::stream_in(file(input_file)) %>%
|
||||||
|
jsonlite::flatten()
|
||||||
|
|
||||||
|
|
||||||
|
# We only need the nblocks and time
|
||||||
|
df = select(dataset, config.nodes, time) %>%
|
||||||
|
rename(nodes=config.nodes)
|
||||||
|
|
||||||
|
df$nodes = as.factor(df$nodes)
|
||||||
|
|
||||||
|
# Normalize the time by the median
|
||||||
|
D=group_by(df, nodes) %>%
|
||||||
|
mutate(tnorm = time / median(time) - 1) %>%
|
||||||
|
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0)))
|
||||||
|
|
||||||
|
D$bad = as.factor(D$bad)
|
||||||
|
|
||||||
|
|
||||||
|
print(D)
|
||||||
|
|
||||||
|
ppi=300
|
||||||
|
h=5
|
||||||
|
w=5
|
||||||
|
|
||||||
|
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(data=D, aes(x=nodes, y=tnorm, color=bad)) +
|
||||||
|
|
||||||
|
# Labels
|
||||||
|
labs(x="#nodes", y="Normalized time",
|
||||||
|
title=sprintf("Saiph-Heat3D Strong-Scaling\nLocal blocking nb{y-z} = 4"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
|
||||||
|
# Center the title
|
||||||
|
#theme(plot.title = element_text(hjust = 0.5)) +
|
||||||
|
|
||||||
|
# Black and white mode (useful for printing)
|
||||||
|
#theme_bw() +
|
||||||
|
|
||||||
|
# Add the maximum allowed error lines
|
||||||
|
geom_hline(yintercept=c(-0.01, 0.01),
|
||||||
|
linetype="dashed", color="gray") +
|
||||||
|
|
||||||
|
# Draw boxplots
|
||||||
|
geom_boxplot() +
|
||||||
|
scale_color_manual(values=c("black", "brown")) +
|
||||||
|
|
||||||
|
#scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
|
||||||
|
|
||||||
|
theme_bw() +
|
||||||
|
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = "none")
|
||||||
|
#theme(legend.position = c(0.85, 0.85))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
## Save the png image
|
||||||
|
dev.off()
|
||||||
|
#
|
||||||
|
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
|
||||||
|
#
|
||||||
|
## Create the plot with the normalized time vs nblocks
|
||||||
|
p = ggplot(D, aes(x=nodes, y=time)) +
|
||||||
|
|
||||||
|
labs(x="#nodes", y="Time (s)",
|
||||||
|
title=sprintf("Saiph-Heat3D Strong-Scaling\nLocal blocking nb{y-z} = 4"),
|
||||||
|
subtitle=input_file) +
|
||||||
|
theme_bw() +
|
||||||
|
theme(plot.subtitle=element_text(size=8)) +
|
||||||
|
theme(legend.position = c(0.5, 0.88)) +
|
||||||
|
|
||||||
|
geom_point(shape=21, size=3) +
|
||||||
|
#scale_x_continuous(trans=log2_trans()) +
|
||||||
|
scale_y_continuous(trans=log2_trans())
|
||||||
|
|
||||||
|
# Render the plot
|
||||||
|
print(p)
|
||||||
|
|
||||||
|
# Save the png image
|
||||||
|
dev.off()
|
Loading…
Reference in New Issue
Block a user