diff --git a/garlic/fig/saiph/blocking.R b/garlic/fig/saiph/blocking.R new file mode 100644 index 0000000..9eda0cc --- /dev/null +++ b/garlic/fig/saiph/blocking.R @@ -0,0 +1,100 @@ +library(ggplot2) +library(dplyr) +library(scales) +library(jsonlite) + +args=commandArgs(trailingOnly=TRUE) + +# Read the timetable from args[1] +input_file = "input.json" +if (length(args)>0) { input_file = args[1] } + +# Load the dataset in NDJSON format +dataset = jsonlite::stream_in(file(input_file)) %>% + jsonlite::flatten() + + +# We only need the nblocks and time +df = select(dataset, config.nby, time) %>% + rename(nby=config.nby) + +df$nby = as.factor(df$nby) + +# Normalize the time by the median +D=group_by(df, nby) %>% + mutate(tnorm = time / median(time) - 1) %>% + mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) + +D$bad = as.factor(D$bad) + + +print(D) + +ppi=300 +h=5 +w=5 + +png("box.png", width=w*ppi, height=h*ppi, res=ppi) +# +# +# +# Create the plot with the normalized time vs nblocks +p = ggplot(data=D, aes(x=nby, y=tnorm, color=bad)) + + + # Labels + labs(x="nb{y-z}", y="Normalized time", + title=sprintf("Saiph-Heat3D normalized time"), + subtitle=input_file) + + + # Center the title + #theme(plot.title = element_text(hjust = 0.5)) + + + # Black and white mode (useful for printing) + #theme_bw() + + + # Add the maximum allowed error lines + geom_hline(yintercept=c(-0.01, 0.01), + linetype="dashed", color="gray") + + + # Draw boxplots + geom_boxplot() + + scale_color_manual(values=c("black", "brown")) + + + #scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) + + + theme_bw() + + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = "none") + #theme(legend.position = c(0.85, 0.85)) + + + + +# Render the plot +print(p) + +## Save the png image +dev.off() +# +png("scatter.png", width=w*ppi, height=h*ppi, res=ppi) +# +## Create the plot with the normalized time vs nblocks +p = ggplot(D, aes(x=nby, y=time)) + + + labs(x="nb{y-z}", y="Time (s)", + title=sprintf("Saiph-Heat3D blocking-granularity"), + subtitle=input_file) + + theme_bw() + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = c(0.5, 0.88)) + + + geom_point(shape=21, size=3) + + #scale_x_continuous(trans=log2_trans()) + + scale_y_continuous(trans=log2_trans()) + +# Render the plot +print(p) + +# Save the png image +dev.off() diff --git a/garlic/fig/saiph/blockingY_blocking_Z.R b/garlic/fig/saiph/blockingY_blocking_Z.R new file mode 100644 index 0000000..d4201d3 --- /dev/null +++ b/garlic/fig/saiph/blockingY_blocking_Z.R @@ -0,0 +1,77 @@ +library(ggplot2) +library(dplyr) +library(scales) +library(jsonlite) + +args=commandArgs(trailingOnly=TRUE) + +# Read the timetable from args[1] +input_file = "input1.json" +if (length(args)>0) { input_file = args[1] } + +input_file2 = "input2.json" +if (length(args)>0) { input_file2 = args[1] } + +# Load the dataset in NDJSON format +dataset = jsonlite::stream_in(file(input_file)) %>% + jsonlite::flatten() + +dataset2 = jsonlite::stream_in(file(input_file2)) %>% + jsonlite::flatten() + + +# We only need the nblocks and time +df = select(dataset, config.nby, time) %>% + rename(nby=config.nby) + +df$nby = as.factor(df$nby) + +df2 = select(dataset2, config.nbz, time) %>% + rename(nbz=config.nbz) + +df2$nbz = as.factor(df2$nbz) + + +# Normalize the time by the median +D=group_by(df, nby) %>% + mutate(tnorm = time / median(time) - 1) %>% + mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) + +D$bad = as.factor(D$bad) + + +print(D) + +D2=group_by(df2, nbz) %>% + mutate(tnorm = time / median(time) - 1) %>% + mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) + +D2$bad = as.factor(D2$bad) + +print(D) +print(D2) + +png("scatter-blockY8Z_yZ8.png", width=w*ppi, height=h*ppi, res=ppi) +# +## Create the plot with the normalized time vs nblocks +p = ggplot() + + geom_point(data=D, aes(x=nby, y=time, colour="nby blocks - nbz = 8"), shape=1, size=3) + + geom_point(data=D2, aes(x=nbz, y=time, colour="nby = 8 - nbz blocks"), shape=1, size=3) + + + labs(x="nb", y="Time (s)", + title=sprintf("Saiph-Heat3D blockingY/Z"), + subtitle=input_file) + + theme_bw() + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = "right") + + + geom_point(shape=21, size=3) + + scale_colour_discrete("Blocked directions") + #+ scale_x_continuous(trans=log2_trans()) + #+ scale_y_continuous(trans=log2_trans()) + +# Render the plot +print(p) + +# Save the png image +dev.off() diff --git a/garlic/fig/saiph/blocking_Y.R b/garlic/fig/saiph/blocking_Y.R new file mode 100644 index 0000000..36c4ed5 --- /dev/null +++ b/garlic/fig/saiph/blocking_Y.R @@ -0,0 +1,100 @@ +library(ggplot2) +library(dplyr) +library(scales) +library(jsonlite) + +args=commandArgs(trailingOnly=TRUE) + +# Read the timetable from args[1] +input_file = "input.json" +if (length(args)>0) { input_file = args[1] } + +# Load the dataset in NDJSON format +dataset = jsonlite::stream_in(file(input_file)) %>% + jsonlite::flatten() + + +# We only need the nblocks and time +df = select(dataset, config.nby, time) %>% + rename(nby=config.nby) + +df$nby = as.factor(df$nby) + +# Normalize the time by the median +D=group_by(df, nby) %>% + mutate(tnorm = time / median(time) - 1) %>% + mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) + +D$bad = as.factor(D$bad) + + +print(D) + +ppi=300 +h=5 +w=5 + +png("box.png", width=w*ppi, height=h*ppi, res=ppi) +# +# +# +# Create the plot with the normalized time vs nblocks +p = ggplot(data=D, aes(x=nby, y=tnorm, color=bad)) + + + # Labels + labs(x="nby", y="Normalized time", + title=sprintf("Saiph-Heat3D normalized time"), + subtitle=input_file) + + + # Center the title + #theme(plot.title = element_text(hjust = 0.5)) + + + # Black and white mode (useful for printing) + #theme_bw() + + + # Add the maximum allowed error lines + geom_hline(yintercept=c(-0.01, 0.01), + linetype="dashed", color="gray") + + + # Draw boxplots + geom_boxplot() + + scale_color_manual(values=c("black", "brown")) + + + #scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) + + + theme_bw() + + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = "none") + #theme(legend.position = c(0.85, 0.85)) + + + + +# Render the plot +print(p) + +## Save the png image +dev.off() +# +png("scatter.png", width=w*ppi, height=h*ppi, res=ppi) +# +## Create the plot with the normalized time vs nblocks +p = ggplot(D, aes(x=nby, y=time)) + + + labs(x="nby", y="Time (s)", + title=sprintf("Saiph-Heat3D blockingY"), + subtitle=input_file) + + theme_bw() + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = c(0.5, 0.88)) + + + geom_point(shape=21, size=3) + #+ scale_x_continuous(trans=log2_trans()) + #+ scale_y_continuous(trans=log2_trans()) + +# Render the plot +print(p) + +# Save the png image +dev.off() diff --git a/garlic/fig/saiph/blocking_YZ.R b/garlic/fig/saiph/blocking_YZ.R new file mode 100644 index 0000000..79cd497 --- /dev/null +++ b/garlic/fig/saiph/blocking_YZ.R @@ -0,0 +1,100 @@ +library(ggplot2) +library(dplyr) +library(scales) +library(jsonlite) + +args=commandArgs(trailingOnly=TRUE) + +# Read the timetable from args[1] +input_file = "input.json" +if (length(args)>0) { input_file = args[1] } + +# Load the dataset in NDJSON format +dataset = jsonlite::stream_in(file(input_file)) %>% + jsonlite::flatten() + + +# We only need the nblocks and time +df = select(dataset, config.nbz, time) %>% + rename(nbz=config.nbz) + +df$nbz = as.factor(df$nbz) + +# Normalize the time by the median +D=group_by(df, nbz) %>% + mutate(tnorm = time / median(time) - 1) %>% + mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) + +D$bad = as.factor(D$bad) + + +print(D) + +ppi=300 +h=5 +w=5 + +png("box.png", width=w*ppi, height=h*ppi, res=ppi) +# +# +# +# Create the plot with the normalized time vs nblocks +p = ggplot(data=D, aes(x=nbz, y=tnorm, color=bad)) + + + # Labels + labs(x="nbz", y="Normalized time", + title=sprintf("Saiph-Heat3D normalized time - nby = 8"), + subtitle=input_file) + + + # Center the title + #theme(plot.title = element_text(hjust = 0.5)) + + + # Black and white mode (useful for printing) + #theme_bw() + + + # Add the maximum allowed error lines + geom_hline(yintercept=c(-0.01, 0.01), + linetype="dashed", color="gray") + + + # Draw boxplots + geom_boxplot() + + scale_color_manual(values=c("black", "brown")) + + + #scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) + + + theme_bw() + + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = "none") + #theme(legend.position = c(0.85, 0.85)) + + + + +# Render the plot +print(p) + +## Save the png image +dev.off() +# +png("scatter.png", width=w*ppi, height=h*ppi, res=ppi) +# +## Create the plot with the normalized time vs nblocks +p = ggplot(D, aes(x=nbz, y=time)) + + + labs(x="nbz", y="Time (s)", + title=sprintf("Saiph-Heat3D blockingZ - nby = 8"), + subtitle=input_file) + + theme_bw() + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = c(0.5, 0.88)) + + + geom_point(shape=21, size=3) + #+ scale_x_continuous(trans=log2_trans()) + #+ scale_y_continuous(trans=log2_trans()) + +# Render the plot +print(p) + +# Save the png image +dev.off() diff --git a/garlic/fig/saiph/blocking_Z.R b/garlic/fig/saiph/blocking_Z.R new file mode 100644 index 0000000..13b2b85 --- /dev/null +++ b/garlic/fig/saiph/blocking_Z.R @@ -0,0 +1,100 @@ +library(ggplot2) +library(dplyr) +library(scales) +library(jsonlite) + +args=commandArgs(trailingOnly=TRUE) + +# Read the timetable from args[1] +input_file = "input.json" +if (length(args)>0) { input_file = args[1] } + +# Load the dataset in NDJSON format +dataset = jsonlite::stream_in(file(input_file)) %>% + jsonlite::flatten() + + +# We only need the nblocks and time +df = select(dataset, config.nbz, time) %>% + rename(nbz=config.nbz) + +df$nbz = as.factor(df$nbz) + +# Normalize the time by the median +D=group_by(df, nbz) %>% + mutate(tnorm = time / median(time) - 1) %>% + mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) + +D$bad = as.factor(D$bad) + + +print(D) + +ppi=300 +h=5 +w=5 + +png("box.png", width=w*ppi, height=h*ppi, res=ppi) +# +# +# +# Create the plot with the normalized time vs nblocks +p = ggplot(data=D, aes(x=nbz, y=tnorm, color=bad)) + + + # Labels + labs(x="nbz", y="Normalized time", + title=sprintf("Saiph-Heat3D normalized time"), + subtitle=input_file) + + + # Center the title + #theme(plot.title = element_text(hjust = 0.5)) + + + # Black and white mode (useful for printing) + #theme_bw() + + + # Add the maximum allowed error lines + geom_hline(yintercept=c(-0.01, 0.01), + linetype="dashed", color="gray") + + + # Draw boxplots + geom_boxplot() + + scale_color_manual(values=c("black", "brown")) + + + #scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) + + + theme_bw() + + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = "none") + #theme(legend.position = c(0.85, 0.85)) + + + + +# Render the plot +print(p) + +## Save the png image +dev.off() +# +png("scatter.png", width=w*ppi, height=h*ppi, res=ppi) +# +## Create the plot with the normalized time vs nblocks +p = ggplot(D, aes(x=nbz, y=time)) + + + labs(x="nbz", y="Time (s)", + title=sprintf("Saiph-Heat3D blockingZ"), + subtitle=input_file) + + theme_bw() + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = c(0.5, 0.88)) + + + geom_point(shape=21, size=3) + #+ scale_x_continuous(trans=log2_trans()) + #+ scale_y_continuous(trans=log2_trans()) + +# Render the plot +print(p) + +# Save the png image +dev.off() diff --git a/garlic/fig/saiph/blocking_ZY.R b/garlic/fig/saiph/blocking_ZY.R new file mode 100644 index 0000000..ef40d9c --- /dev/null +++ b/garlic/fig/saiph/blocking_ZY.R @@ -0,0 +1,100 @@ +library(ggplot2) +library(dplyr) +library(scales) +library(jsonlite) + +args=commandArgs(trailingOnly=TRUE) + +# Read the timetable from args[1] +input_file = "input.json" +if (length(args)>0) { input_file = args[1] } + +# Load the dataset in NDJSON format +dataset = jsonlite::stream_in(file(input_file)) %>% + jsonlite::flatten() + + +# We only need the nblocks and time +df = select(dataset, config.nby, time) %>% + rename(nby=config.nby) + +df$nby = as.factor(df$nby) + +# Normalize the time by the median +D=group_by(df, nby) %>% + mutate(tnorm = time / median(time) - 1) %>% + mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) + +D$bad = as.factor(D$bad) + + +print(D) + +ppi=300 +h=5 +w=5 + +png("box.png", width=w*ppi, height=h*ppi, res=ppi) +# +# +# +# Create the plot with the normalized time vs nblocks +p = ggplot(data=D, aes(x=nby, y=tnorm, color=bad)) + + + # Labels + labs(x="nby", y="Normalized time", + title=sprintf("Saiph-Heat3D normalized time - nbz = 8"), + subtitle=input_file) + + + # Center the title + #theme(plot.title = element_text(hjust = 0.5)) + + + # Black and white mode (useful for printing) + #theme_bw() + + + # Add the maximum allowed error lines + geom_hline(yintercept=c(-0.01, 0.01), + linetype="dashed", color="gray") + + + # Draw boxplots + geom_boxplot() + + scale_color_manual(values=c("black", "brown")) + + + #scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) + + + theme_bw() + + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = "none") + #theme(legend.position = c(0.85, 0.85)) + + + + +# Render the plot +print(p) + +## Save the png image +dev.off() +# +png("scatter.png", width=w*ppi, height=h*ppi, res=ppi) +# +## Create the plot with the normalized time vs nblocks +p = ggplot(D, aes(x=nby, y=time)) + + + labs(x="nby", y="Time (s)", + title=sprintf("Saiph-Heat3D blockingY - nbz = 8"), + subtitle=input_file) + + theme_bw() + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = c(0.5, 0.88)) + + + geom_point(shape=21, size=3) + #+ scale_x_continuous(trans=log2_trans()) + #+ scale_y_continuous(trans=log2_trans()) + +# Render the plot +print(p) + +# Save the png image +dev.off() diff --git a/garlic/fig/saiph/granBlock.R b/garlic/fig/saiph/granBlock.R new file mode 100644 index 0000000..059d9a9 --- /dev/null +++ b/garlic/fig/saiph/granBlock.R @@ -0,0 +1,67 @@ +library(ggplot2) +library(dplyr) +library(scales) +library(jsonlite) + +args=commandArgs(trailingOnly=TRUE) + +# Read the timetable from args[1] +input_file1 = "input1.json" +if (length(args)>0) { input_file1 = args[1] } + +input_file2 = "input2.json" +if (length(args)>1) { input_file2 = args[2] } + +# Load the dataset in NDJSON format +dataset1 = jsonlite::stream_in(file(input_file1)) %>% + jsonlite::flatten() +dataset2 = jsonlite::stream_in(file(input_file2)) %>% + jsonlite::flatten() + +# We only need the nblocks and time +df1 = select(dataset1, config.nbx, time) %>% + rename(nb1=config.nbx) + +df2 = select(dataset2, config.nby, time) %>% + rename(nb2=config.nby) + +df1$nb1 = as.factor(df1$nb1) +df2$nb2 = as.factor(df2$nb2) + +# Normalize the time by the median +D1=group_by(df1, nb1) +D2=group_by(df2, nb2) + +print(D1) +print(D2) + +ppi=300 +h=5 +w=7 + +png("scatter_granularity_and_blocking.png", width=w*ppi, height=h*ppi, res=ppi) +# +## Create the plot with the normalized time vs nblocks +p = ggplot() + + geom_point(data=D1, aes(x=nb1, y=time, colour = 'nbx-nby-nbz'), shape=1, size=4) + + geom_point(data=D2, aes(x=nb2, y=time, colour = 'nby-nbz'), shape=1, size=4) + + + labs(x="nb", y="Time (s)", + title=sprintf("Saiph-Heat3D granularity & blocking"), + subtitle=input_file1) + + theme_bw() + + theme(plot.subtitle=element_text(size=8)) + + #theme(legend.position = c(0.5, 0.88)) + + theme(legend.position = "right") + + + geom_point(shape=21, size=3) + + #scale_x_continuous(trans=log2_trans()) + + scale_y_continuous(trans=log2_trans()) + + scale_colour_discrete("Blocked directions") + + +# Render the plot +print(p) + +# Save the png image +dev.off() diff --git a/garlic/fig/saiph/strongScaling.R b/garlic/fig/saiph/strongScaling.R new file mode 100644 index 0000000..97224a0 --- /dev/null +++ b/garlic/fig/saiph/strongScaling.R @@ -0,0 +1,100 @@ +library(ggplot2) +library(dplyr) +library(scales) +library(jsonlite) + +args=commandArgs(trailingOnly=TRUE) + +# Read the timetable from args[1] +input_file = "input.json" +if (length(args)>0) { input_file = args[1] } + +# Load the dataset in NDJSON format +dataset = jsonlite::stream_in(file(input_file)) %>% + jsonlite::flatten() + + +# We only need the nblocks and time +df = select(dataset, config.nodes, time) %>% + rename(nodes=config.nodes) + +df$nodes = as.factor(df$nodes) + +# Normalize the time by the median +D=group_by(df, nodes) %>% + mutate(tnorm = time / median(time) - 1) %>% + mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) + +D$bad = as.factor(D$bad) + + +print(D) + +ppi=300 +h=5 +w=5 + +png("box.png", width=w*ppi, height=h*ppi, res=ppi) +# +# +# +# Create the plot with the normalized time vs nblocks +p = ggplot(data=D, aes(x=nodes, y=tnorm, color=bad)) + + + # Labels + labs(x="#nodes", y="Normalized time", + title=sprintf("Saiph-Heat3D Strong-Scaling\nLocal blocking nb{y-z} = 4"), + subtitle=input_file) + + + # Center the title + #theme(plot.title = element_text(hjust = 0.5)) + + + # Black and white mode (useful for printing) + #theme_bw() + + + # Add the maximum allowed error lines + geom_hline(yintercept=c(-0.01, 0.01), + linetype="dashed", color="gray") + + + # Draw boxplots + geom_boxplot() + + scale_color_manual(values=c("black", "brown")) + + + #scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) + + + theme_bw() + + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = "none") + #theme(legend.position = c(0.85, 0.85)) + + + + +# Render the plot +print(p) + +## Save the png image +dev.off() +# +png("scatter.png", width=w*ppi, height=h*ppi, res=ppi) +# +## Create the plot with the normalized time vs nblocks +p = ggplot(D, aes(x=nodes, y=time)) + + + labs(x="#nodes", y="Time (s)", + title=sprintf("Saiph-Heat3D Strong-Scaling\nLocal blocking nb{y-z} = 4"), + subtitle=input_file) + + theme_bw() + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = c(0.5, 0.88)) + + + geom_point(shape=21, size=3) + + #scale_x_continuous(trans=log2_trans()) + + scale_y_continuous(trans=log2_trans()) + +# Render the plot +print(p) + +# Save the png image +dev.off()