library(ggplot2) library(dplyr) library(scales) library(jsonlite) library(viridis) args=commandArgs(trailingOnly=TRUE) # Read the timetable from args[1] input_file = "input.json" if (length(args)>0) { input_file = args[1] } # Load the dataset in NDJSON format dataset = jsonlite::stream_in(file(input_file)) %>% jsonlite::flatten() # We only need the nblocks and time #df = select(dataset, config.nbly, config.nodes, time, total_time, config.gitCommit) %>% # rename(nbly=config.nbly, nnodes=config.nodes, gitCommit=config.gitCommit) df = select(dataset, config.nbly, config.nblz, config.nbltotal, config.nodes, time, total_time) %>% rename(nbly=config.nbly, nblz=config.nblz, nbltotal=config.nbltotal, nnodes=config.nodes) df2 = df[df$nblz == 1 | df$nblz == 2 | df$nblz == 4, ] df3 = df[df$nbly == 1 | df$nbly == 2 | df$nbly == 4, ] # df2 data frame df2$nblsetZ = as.factor(df2$nblz) df2$nblPerProcZ = as.factor(df2$nbltotal / 24) df2$nbltotal = as.factor(df2$nbltotal) df2$nodes = as.factor(df2$nnodes) # df3 data frame df3$nblsetY = as.factor(df3$nbly) df3$nblPerProcY = as.factor(df3$nbltotal / 24) df3$nbltotalY = as.factor(df3$nbltotal) df3$nodes = as.factor(df3$nnodes) df$nbly = as.factor(df$nbly) df$nblz = as.factor(df$nblz) df$nblPerProc = as.factor(df$nbltotal / 24) df$nbltotal = as.factor(df$nbltotal) df$nodes = as.factor(df$nnodes) #df$gitCommit = as.factor(df$gitCommit) # Normalize the time by the median #D=group_by(df, nbly, nodes, gitCommit) %>% D=group_by(df, nbly, nblz, nbltotal, nodes) %>% mutate(tmedian = median(time)) %>% mutate(ttmedian = median(total_time)) %>% mutate(tnorm = time / tmedian - 1) %>% mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) %>% mutate(tn = tmedian * nnodes) %>% ungroup() D$bad = as.factor(D$bad) print(D) ppi=300 h=5 w=8 png("scatter_nbly.png", width=w*ppi, height=h*ppi, res=ppi) # ## Create the plot with the normalized time vs nblocks p = ggplot() + geom_point(data=df2, aes(x=nblPerProcZ, y=time, color=nblsetZ), shape=21, size=3, show.legend=TRUE) + geom_point(data=df3, aes(x=nblPerProcY, y=time, color=nblsetY), shape=4, size=2, show.legend=TRUE) + labs(x="nblPerProc", y="Time (s)", title=sprintf("Saiph-Heat3D granularity per nodes"), subtitle=input_file) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + theme(legend.position = c(0.5, 0.5)) + scale_y_continuous(trans=log2_trans()) + facet_wrap( ~ nodes) # Render the plot print(p) # Save the png image dev.off() png("scatter_nbly.png", width=w*ppi, height=h*ppi, res=ppi) # ## Create the plot with the normalized time vs nblocks p = ggplot() + geom_point(data=df2, aes(x=nblPerProcZ, y=time, color=nblsetZ), shape=21, size=3, show.legend=TRUE) + geom_point(data=df3, aes(x=nblPerProcY, y=time, color=nblsetY), shape=4, size=2, show.legend=TRUE) + labs(x="nblPerProc", y="Time (s)", title=sprintf("Saiph-Heat3D granularity per nodes"), subtitle=input_file) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + theme(legend.position = c(0.5, 0.5)) + scale_y_continuous(trans=log2_trans()) + facet_wrap( ~ nodes) # Render the plot print(p) # Save the png image dev.off() png("test1.png", width=w*ppi, height=h*ppi, res=ppi) # ## Create the plot with the normalized time vs nblocks p = ggplot(D, aes(x=nblPerProc, y=tn)) + labs(x="nblPerProc", y="Time (s) * nodes", title=sprintf("Saiph-Heat3D granularity per nbly blocks"), subtitle=input_file) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + geom_point(shape=21, size=3) + geom_line(aes(color=nodes, group=nodes)) + #scale_x_continuous(trans=log2_trans()) + scale_y_continuous(trans=log2_trans()) + facet_wrap( ~ nbly) # Render the plot print(p) # Save the png image dev.off() heatmap_plot = function(df, colname, title) { p = ggplot(df, aes(x=nbly, y=nblz, fill=!!ensym(colname))) + geom_raster() + #scale_fill_gradient(high="black", low="white") + scale_fill_viridis(option="plasma") + coord_fixed() + theme_bw() + theme(axis.text.x=element_text(angle = -45, hjust = 0)) + theme(plot.subtitle=element_text(size=8)) + #guides(fill = guide_colorbar(barwidth=15, title.position="top")) + guides(fill = guide_colorbar(barwidth=12, title.vjust=0.8)) + labs(x="nbly", y="nblz", title=sprintf("Heat granularity: %s", title), subtitle=input_file) + theme(legend.position="bottom")+ facet_wrap( ~ nodes) k=1 ggsave(sprintf("%s.png", colname), plot=p, width=4.8*k, height=5*k, dpi=300) ggsave(sprintf("%s.pdf", colname), plot=p, width=4.8*k, height=5*k, dpi=300) } heatmap_plot(D, "tmedian", "time")