From 7b4da07dbfd37e8526553a14df63ccd27cce0c4d Mon Sep 17 00:00:00 2001 From: Rodrigo Arias Mallo Date: Tue, 9 Mar 2021 18:21:59 +0100 Subject: [PATCH] heat: add more figures from perf counters --- garlic/fig/heat/cache.R | 68 ++++++++++++++++++++++++++++------------- 1 file changed, 47 insertions(+), 21 deletions(-) diff --git a/garlic/fig/heat/cache.R b/garlic/fig/heat/cache.R index b9025aed..a9fa5ebe 100644 --- a/garlic/fig/heat/cache.R +++ b/garlic/fig/heat/cache.R @@ -2,6 +2,7 @@ library(ggplot2) library(dplyr) library(scales) library(jsonlite) +library(viridis) args=commandArgs(trailingOnly=TRUE) @@ -14,7 +15,7 @@ dataset = jsonlite::stream_in(file(input_file)) %>% jsonlite::flatten() # We only need the nblocks and time -df = select(dataset, config.cbs, config.rbs, perf.cache_misses) %>% +df = select(dataset, config.cbs, config.rbs, perf.cache_misses, perf.instructions, perf.cycles, time) %>% rename(cbs=config.cbs, rbs=config.rbs) df$cbs = as.factor(df$cbs) @@ -22,30 +23,55 @@ df$rbs = as.factor(df$rbs) # Normalize the time by the median df=group_by(df, cbs, rbs) %>% + mutate(median.time = median(time)) %>% + mutate(log.median.time = log(median.time)) %>% mutate(median.misses = median(perf.cache_misses)) %>% mutate(log.median.misses = log(median.misses)) %>% - ungroup() + mutate(median.instr= median(perf.instructions)) %>% + mutate(log.median.instr= log(median.instr)) %>% + mutate(median.cycles = median(perf.cycles)) %>% + mutate(median.cpi = median.cycles / median.instr) %>% + mutate(median.ipc = median.instr / median.cycles) %>% + mutate(median.ips = median.instr / median.time) %>% + mutate(median.cps = median.cycles / median.time) %>% + ungroup()# %>% -ppi=300 -h=5 -w=5 +heatmap_plot = function(df, colname, title) { + p = ggplot(df, aes(x=cbs, y=rbs, fill=!!ensym(colname))) + + geom_raster() + + #scale_fill_gradient(high="black", low="white") + + scale_fill_viridis(option="plasma") + + coord_fixed() + + theme_bw() + + theme(axis.text.x=element_text(angle = -45, hjust = 0)) + + theme(plot.subtitle=element_text(size=8)) + + #guides(fill = guide_colorbar(barwidth=15, title.position="top")) + + guides(fill = guide_colorbar(barwidth=12, title.vjust=0.8)) + + labs(x="cbs", y="rbs", + title=sprintf("Heat granularity: %s", title), + subtitle=input_file) + + theme(legend.position="bottom") + k=1 + ggsave(sprintf("%s.png", colname), plot=p, width=4.8*k, height=5*k, dpi=300) + ggsave(sprintf("%s.pdf", colname), plot=p, width=4.8*k, height=5*k, dpi=300) +} -png("heatmap.png", width=1.5*w*ppi, height=h*ppi, res=ppi) -# -## Create the plot with the normalized time vs nblocks -p = ggplot(df, aes(x=cbs, y=rbs, fill=log.median.misses)) + - geom_raster() + - scale_fill_gradient(high="black", low="white") + - coord_fixed() + - theme_bw() + - theme(plot.subtitle=element_text(size=8)) + - labs(x="cbs", y="rbs", - title=sprintf("Heat granularity: cache misses"), - subtitle=input_file) +heatmap_plot(df, "median.misses", "cache misses") +heatmap_plot(df, "log.median.misses", "cache misses") +heatmap_plot(df, "median.instr", "instructions") +heatmap_plot(df, "log.median.instr", "instructions") +heatmap_plot(df, "median.cycles", "cycles") +heatmap_plot(df, "median.ipc", "IPC") +heatmap_plot(df, "median.cpi", "cycles/instruction") +heatmap_plot(df, "median.ips", "instructions/second") +heatmap_plot(df, "median.cps", "cycles/second") -# Render the plot -print(p) +cutlevel = 0.5 +# To plot the median.time we crop the larger values: +df_filtered = filter(df, between(median.time, + median(time) - (cutlevel * sd(time)), + median(time) + (cutlevel * sd(time)))) -# Save the png image -dev.off() +heatmap_plot(df_filtered, "median.time", "execution time (seconds)") +heatmap_plot(df_filtered, "log.median.time", "execution time")