Implement PID thremostat controller

For now only the proportional (Kp) and derivative (Kd) components are
used, the integral term is 0.
This commit is contained in:
Rodrigo Arias Mallo 2025-11-02 19:24:02 +01:00
parent 678f16111b
commit 8502ee3c5c
9 changed files with 191 additions and 69 deletions

View File

@ -40,6 +40,9 @@ test: ntc.test overheat.test led.test
%.test: test/test_%.o test/compat.o %.o
gcc $^ -o $@ $(LIBS)
thermostat.test: test/test_thermostat.o test/compat.o thermostat.o overheat.o heater.o
gcc $^ -o $@ $(LIBS)
clean:
rm -f $(TESTS) test/*.o *.o

View File

@ -15,7 +15,7 @@ enum logic {
};
#define DEBOUNCE_TIME 20L /* ms */
#define TEMP_HOT 70.0f /* C */
#define TEMP_HOT 75.0f /* C */
#define LED_MIN_VALUE 0
@ -198,7 +198,7 @@ unsigned long brewing_max_time = 30000UL; /* 30 seconds */
unsigned long cooling_time = 3000UL; /* 3 seconds */
unsigned long overheat_time = 10000UL; /* 10 seconds */
unsigned long max_heating_time = 60000UL; /* 60 seconds */
unsigned long max_idle_time = 120000UL; /* 120 seconds */
unsigned long max_idle_time = 300000UL; /* 300 seconds */
void proc_machine(struct state *st)
{
@ -209,15 +209,6 @@ void proc_machine(struct state *st)
int brew_hot = (st->btn[BTN_HOT].state == PRESSED);
unsigned long t = millis();
if (t - last_print_t > 100) {
Serial.print(t);
Serial.print(" ");
Serial.print(st->mstate);
Serial.print(" ");
Serial.println(temp);
last_print_t = t;
}
/* If the machine is overheating */
if (overheat_panic(&st->overheat)) {
st->mstate = PANIC_OVERHEAT;
@ -352,43 +343,55 @@ output_leds(const struct state *st)
}
void
output_heater(const struct state *st)
output_relays(const struct state *st)
{
unsigned long t = millis();
/* First configure thermostate */
if (st->mstate == HEATING || st->mstate == HOT || st->mstate == BREWING_HOT)
thermostat_set(&st->thermostat, TEMP_HOT);
thermostat_set(&st->thermostat, TEMP_HOT+5.0);
else
thermostat_off(&st->thermostat);
/* Then update heater state from thermostate */
if (thermostat_state(&st->thermostat, st->ntc_T))
heater_on(&st->heater, t);
else
heater_off(&st->heater);
float T = st->ntc_T;
float dT_dt = overheat_speed(&st->overheat);
float u = thermostat_state(&st->thermostat, T, dT_dt);
heater_on(&st->heater, t, u);
/* Then switch relays accordingly */
if (heater_state(&st->heater, t))
int heater_relay_st = heater_state(&st->heater, t);
if (heater_relay_st)
relay(PIN_HEAT, ON);
else
relay(PIN_HEAT, OFF);
}
void
output_pump(const struct state *st)
{
int pump_relay_st = 0;
if (st->mstate == BREWING_HOT || st->mstate == BREWING_COLD)
pump_relay_st = 1;
if (pump_relay_st)
relay(PIN_PUMP, ON);
else
relay(PIN_PUMP, OFF);
Serial.print(t);
Serial.print(" ");
Serial.print(st->mstate);
Serial.print(" ");
Serial.print(T);
Serial.print(" ");
Serial.print(u);
Serial.print(" ");
Serial.print(heater_relay_st);
Serial.print(" ");
Serial.println(pump_relay_st);
}
void do_output(const struct state *st)
{
output_leds(st);
output_heater(st);
output_pump(st);
output_relays(st);
}
void setup()

View File

@ -3,25 +3,34 @@
#include "heater.h"
#define HEATER_T_ON 500UL /* ms */
#define HEATER_T_OFF 5000UL /* ms */
#define HEATER_MIN 500UL /* ms */
#define HEATER_MAX 2000UL /* ms */
#define HEATER_PERIOD 5000UL /* ms */
void
heater_on(struct heater *h, unsigned long t_ms)
heater_on(struct heater *h, unsigned long t_ms, float duty)
{
if (h->st == HEATER_ON)
return;
unsigned long dt_on = duty * HEATER_MAX;
h->next_t = t_ms + HEATER_T_ON;
if (dt_on < HEATER_MIN)
dt_on = 0;
else if (dt_on > HEATER_MAX)
dt_on = HEATER_MAX;
h->next_on_dt = dt_on;
if (h->st == HEATER_OFF) {
h->st = HEATER_ON;
h->turn_on = 1;
h->t0_on = t_ms;
h->t0_off = t_ms + h->next_on_dt;
h->cycle = CYCLE_ON;
}
}
void
heater_off(struct heater *h)
{
h->st = HEATER_OFF;
h->turn_on = 0;
}
int
@ -33,15 +42,29 @@ heater_state(struct heater *h, unsigned long t_ms)
/* Switch state if current time exceeds time limit
* in the current state */
/* FIXME: Integer overflow can cause the heater to turn on forever */
if (t_ms > h->next_t) {
if (h->turn_on) {
h->turn_on = 0;
h->next_t = t_ms + HEATER_T_OFF;
} else {
h->turn_on = 1;
h->next_t = t_ms + HEATER_T_ON;
while (1) {
int changed = 0;
if (h->cycle == CYCLE_ON) {
if (t_ms >= h->t0_off) {
h->cycle = CYCLE_OFF;
h->t0_on += HEATER_PERIOD;
changed = 1;
}
} else if (h->cycle == CYCLE_OFF) {
if (t_ms >= h->t0_on) {
/* Compute current cycle t0_off */
h->cycle = CYCLE_ON;
h->t0_off = h->t0_on + h->next_on_dt;
changed = 1;
}
}
return h->turn_on;
if (!changed)
break;
}
if (h->cycle == CYCLE_ON)
return 1;
return 0;
}

View File

@ -13,13 +13,22 @@ enum heater_state {
HEATER_ON,
};
struct heater {
enum heater_state st;
int turn_on;
unsigned long next_t; /* in ms */
enum heater_cycle {
CYCLE_ON = 0,
CYCLE_OFF,
};
void heater_on(struct heater *h, unsigned long t_ms);
struct heater {
enum heater_state st;
enum heater_cycle cycle;
unsigned long t0_on; /* current cycle time on */
unsigned long t0_off; /* current cycle time off */
/* Next cycle */
unsigned long next_on_dt; /* in ms */
};
void heater_on(struct heater *h, unsigned long t_ms, float duty);
void heater_off(struct heater *h);
int heater_state(struct heater *h, unsigned long t_ms);

View File

@ -18,22 +18,25 @@ overheat_input(struct overheat *o, unsigned long t_ms, float temp)
if (delta < OVH_INTERVAL)
return;
o->temp[o->next++] = temp;
/* If already go n samples, recompute delta and speed */
if (o->n == OVH_NSAMPLES) {
float last_T = o->temp[o->next];
float last_t = o->t[o->next];
float dt = (float) (t_ms - last_t) * 1e-3;
o->delta = temp - last_T;
o->speed = o->delta / dt;
}
/* Add the new sample */
o->temp[o->next] = temp;
o->t[o->next] = t_ms;
o->next++;
if (o->next >= OVH_NSAMPLES)
o->next = 0;
if (o->n < OVH_NSAMPLES)
o->n++;
/* Recompute state */
float tmin = 10000.0, tmax = 0.0;
for (int i = 0; i < o->n; i++) {
if (o->temp[i] < tmin)
tmin = o->temp[i];
if (o->temp[i] > tmax)
tmax = o->temp[i];
}
o->delta = tmax - tmin;
o->last_time = t_ms;
}
float
@ -42,10 +45,16 @@ overheat_delta(struct overheat *o)
return o->delta;
}
float
overheat_speed(struct overheat *o)
{
return o->speed;
}
int
overheat_panic(struct overheat *o)
{
if (o->delta > OVH_THRESHOLD)
if (o->speed > OVH_THRESHOLD)
return 1;
else
return 0;

View File

@ -10,19 +10,22 @@ extern "C" {
#define OVH_NSAMPLES 20
#define OVH_INTERVAL 200 /* ms */
#define OVH_THRESHOLD 2.0 /* °C */
#define OVH_THRESHOLD 2.0 /* °C / s */
struct overheat {
unsigned long last_time;
float temp[OVH_NSAMPLES];
long unsigned t[OVH_NSAMPLES];
int next;
int n;
float delta;
float speed;
};
void overheat_init(struct overheat *o);
void overheat_input(struct overheat *o, unsigned long t_ms, float temp);
float overheat_delta(struct overheat *o);
float overheat_speed(struct overheat *o);
int overheat_panic(struct overheat *o);
#ifdef __cplusplus

View File

@ -0,0 +1,49 @@
/* Copyright (c) 2025 Rodrigo Arias Mallo <rodarima@gmail.com>
* SPDX-License-Identifier: GPL-3.0-or-later */
#include <stdio.h>
#include "overheat.h"
#include "thermostat.h"
#include "heater.h"
/* Read a CSV from the stdin in the format
* <time_in_seconds> <state> <temp_in_C>
* skipping the first row (header).
*
* Outputs overheat state. */
#define MAX_LINE 1024
int main(void)
{
char buf[MAX_LINE];
fgets(buf, MAX_LINE, stdin);
float t, temp;
int st;
struct overheat ovh = { 0 };
struct thermostat th = { 0 };
struct heater heater = { 0 };
overheat_init(&ovh);
for (int i = 0; scanf("%f %d %f", &t, &st, &temp) == 3; i++) {
if (i == 0)
thermostat_set(&th, 60.0);
unsigned long t_ms = t * 1000;
overheat_input(&ovh, t_ms, temp);
float delta = overheat_delta(&ovh);
float speed = overheat_speed(&ovh);
float u = thermostat_state(&th, temp, speed);
heater_on(&heater, t_ms, u);
int h = heater_state(&heater, t_ms);
int panic = overheat_panic(&ovh);
printf("%8.3f %2d %6.2f %6.1f %8.3f %8.3f %d %s\n", t, st, temp, delta, speed, u, h, panic ? "PANIC" : "OK");
}
return 0;
}

View File

@ -3,9 +3,12 @@
#include "thermostat.h"
#define TEMP_MIN 35.0 /* °C */
#define DELTA_LOW 1.0
#define DELTA_HIGH 1.0
#define T_ERR_MIN 35.0 /* °C */
void
thermostat_set(struct thermostat *th, float temp_target)
{
@ -26,16 +29,36 @@ thermostat_off(struct thermostat *th)
th->on = 0;
}
int
thermostat_state(struct thermostat *th, float temp)
static float
pid(float T0, float T, float dT_dt)
{
float err_min = 2.0;
/* The rate of change of error is the same as the temperature, as they
* are only offset by a mostly constant value */
float derr_dt = dT_dt;
if ((T0 - T) < err_min)
return 0.0;
float Kp = 1.0 / 20.0;
float Kd = - 1.0 / 3.0;
float u = Kp * (T0 - T) + Kd * dT_dt;
if (u < 0.0)
u = 0.0;
else if (u > 1.0)
u = 1.0;
return u;
}
/* Return a value in [0, 1] to set the heater duty cycle */
float
thermostat_state(struct thermostat *th, float T, float dT_dt)
{
if (th->st == THERMOSTAT_OFF)
return 0;
return 0.0;
if (th->on && temp > th->temp_max)
th->on = 0;
else if (!th->on && temp < th->temp_min)
th->on = 1;
return th->on;
return pid(th->temp_target, T, dT_dt);
}

View File

@ -23,7 +23,7 @@ struct thermostat {
void thermostat_set(struct thermostat *th, float temp_target);
void thermostat_off(struct thermostat *th);
int thermostat_state(struct thermostat *th, float temp);
float thermostat_state(struct thermostat *th, float T, float dT_dt);
#ifdef __cplusplus
}