bscpkgs/garlic/fig/creams/granularity16.R

137 lines
4.5 KiB
R

library(ggplot2)
library(dplyr, warn.conflicts = FALSE)
library(scales)
library(jsonlite)
library(viridis, warn.conflicts = FALSE)
library(stringr)
args = commandArgs(trailingOnly=TRUE)
# Set the input dataset if given in argv[1], or use "input" as default
if (length(args)>0) { input_file = args[1] } else { input_file = "input" }
if (length(args)>1) { output = args[2] } else { output = "?" }
df = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
jsonlite::flatten() %>%
select(unit,
config.nodes,
config.gitBranch,
config.granul,
config.iterations,
config.sizeFactor,
config.nz,
time,
total_time) %>%
rename(nodes=config.nodes,
gitBranch=config.gitBranch,
granul=config.granul,
sizeFactor=config.sizeFactor,
nz=config.nz,
iterations=config.iterations) %>%
# Remove the "garlic/" prefix from the gitBranch
mutate(branch = str_replace(gitBranch, "garlic/", "")) %>%
# Computations before converting to factor
mutate(time.nodes = time * nodes) %>%
mutate(time.elem = time / sizeFactor) %>%
mutate(time.nodes.iter = time.nodes / iterations) %>%
# Convert to factors
mutate(unit = as.factor(unit)) %>%
mutate(nodes = as.factor(nodes)) %>%
mutate(gitBranch = as.factor(gitBranch)) %>%
mutate(granul = as.factor(granul)) %>%
mutate(iterations = as.factor(iterations)) %>%
mutate(sizeFactor = as.factor(sizeFactor)) %>%
mutate(nz = as.factor(nz)) %>%
mutate(unit = as.factor(unit)) %>%
# Compute median times
group_by(unit) %>%
mutate(median.time = median(time)) %>%
mutate(median.time.nodes = median(time.nodes)) %>%
mutate(median.time.elem = median(time.elem)) %>%
mutate(normalized.time = time / median.time - 1) %>%
mutate(log.median.time = log(median.time)) %>%
mutate(log.median.time.elem = log(median.time.elem)) %>%
mutate(median.time.nodes.iter = median(time.nodes.iter)) %>%
ungroup() %>%
group_by(sizeFactor) %>%
mutate(optimal.granul = (median.time.elem == min(median.time.elem))) %>%
ungroup()
dfopt = df %>% filter(optimal.granul == TRUE)
dpi = 300
h = 4
w = 10
# ---------------------------------------------------------------------
#p = ggplot(df, aes(x=sizeFactor, y=normalized.time, fill=granul, color=iterations)) +
# geom_boxplot() +
# geom_hline(yintercept=c(-0.01, 0.01), linetype="dashed", color="red") +
# theme_bw() +
# facet_wrap(branch ~ .) +
# labs(x="nodes", y="Normalized time",
# title="Creams strong scaling: normalized time",
# subtitle=output) +
# theme(plot.subtitle=element_text(size=8))
#
#ggsave("normalized.time.png", plot=p, width=w, height=h, dpi=dpi)
#ggsave("normalized.time.pdf", plot=p, width=w, height=h, dpi=dpi)
# ---------------------------------------------------------------------
p = ggplot(df, aes(x=granul, y=time.elem, color=branch)) +
geom_point(shape=21, size=3) +
# geom_line(aes(y=median.time, group=gitBranch)) +
theme_bw() +
facet_wrap(sizeFactor ~ ., labeller=label_both, nrow=1) +
labs(x="Granularity", y="Time / k (s)",
#title="Creams size: time per object",
subtitle=output) +
theme(plot.subtitle=element_text(size=8, family="mono"),
legend.position="bottom")
ggsave("time.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("time.pdf", plot=p, width=w, height=h, dpi=dpi)
# ---------------------------------------------------------------------
p = ggplot(df, aes(x=granul, y=median.time.elem, color=sizeFactor)) +
geom_line(aes(group=sizeFactor)) +
geom_point(data=dfopt, aes(x=granul, y=median.time.elem)) +
theme_bw() +
labs(x="Granularity", y="Time / k (s)",
color="Size factor k",
subtitle=output) +
theme(plot.subtitle=element_text(size=8, family="mono"),
legend.position="bottom")
ggsave("median.time.png", plot=p, width=5, height=5, dpi=dpi)
ggsave("median.time.pdf", plot=p, width=5, height=5, dpi=dpi)
# ---------------------------------------------------------------------
p = ggplot(df, aes(x=granul, y=sizeFactor, fill=log.median.time.elem)) +
geom_raster() +
scale_fill_viridis(option="plasma") +
coord_fixed() +
theme_bw() +
theme(axis.text.x=element_text(angle = -45, hjust = 0)) +
theme(plot.subtitle=element_text(size=8)) +
#guides(fill = guide_colorbar(barwidth=15, title.position="top")) +
guides(fill = guide_colorbar(barwidth=12, title.vjust=0.8)) +
labs(x="Granularity", y="Size factor", fill="Time / k (s)", subtitle=output) +
theme(plot.subtitle=element_text(size=8, family="mono"),
legend.position="bottom")
k=1
ggsave("heatmap.png", plot=p, width=4.8*k, height=5*k, dpi=300)
ggsave("heatmap.pdf", plot=p, width=4.8*k, height=5*k, dpi=300)