72 lines
2.0 KiB
R
72 lines
2.0 KiB
R
library(ggplot2)
|
|
library(dplyr)
|
|
library(scales)
|
|
library(jsonlite)
|
|
|
|
args=commandArgs(trailingOnly=TRUE)
|
|
|
|
# Read the timetable from args[1]
|
|
input_file = "input.json"
|
|
if (length(args)>0) { input_file = args[1] }
|
|
|
|
# Load the dataset in NDJSON format
|
|
dataset = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
|
|
jsonlite::flatten()
|
|
|
|
# We only need some colums
|
|
df = select(dataset, unit, config.nodes, config.gitBranch,
|
|
config.granul, time, total_time) %>%
|
|
rename(nodes=config.nodes, gitBranch=config.gitBranch,
|
|
granul=config.granul)
|
|
|
|
df$unit = as.factor(df$unit)
|
|
df$nnodes = df$nodes
|
|
df$nodes = as.factor(df$nodes)
|
|
df$gitBranch = as.factor(df$gitBranch)
|
|
df$granul = as.factor(df$granul)
|
|
|
|
# Remove the "garlic/" prefix from the gitBranch
|
|
levels(df$gitBranch) <- substring((levels(df$gitBranch)), 8)
|
|
|
|
# Compute new columns
|
|
D=group_by(df, unit) %>%
|
|
mutate(tnorm = time / median(time) - 1) %>%
|
|
mutate(bad = ifelse(max(abs(tnorm)) >= 0.01, 1, 0)) %>%
|
|
mutate(variability = ifelse(bad > 0, "large", "ok")) %>%
|
|
mutate(mtime = median(time)) %>%
|
|
mutate(nmtime = mtime*nnodes) %>%
|
|
mutate(ntime = time*nnodes) %>%
|
|
ungroup() %>%
|
|
mutate(min_nmtime = min(nmtime)) %>%
|
|
mutate(rnmtime = nmtime / min_nmtime) %>%
|
|
mutate(rntime = ntime / min_nmtime) %>%
|
|
mutate(rmeff = 1.0 / rnmtime) %>%
|
|
mutate(reff = 1.0 / rntime) %>%
|
|
group_by(gitBranch) %>%
|
|
mutate(tmax = max(mtime)) %>%
|
|
mutate(speedup=tmax/time) %>%
|
|
mutate(eff=speedup/nnodes) %>%
|
|
mutate(mspeedup=tmax/mtime) %>%
|
|
mutate(meff=mspeedup/nnodes) %>%
|
|
ungroup()
|
|
|
|
D$bad = as.factor(D$bad > 0)
|
|
D$variability = as.factor(D$variability)
|
|
|
|
ppi=300
|
|
h=5
|
|
w=5
|
|
|
|
png("time.png", width=w*1.5*ppi, height=h*ppi, res=ppi)
|
|
p = ggplot(D, aes(x=granul, y=mtime, linetype=gitBranch, shape=nodes)) +
|
|
geom_line(aes(group=interaction(nodes, gitBranch))) +
|
|
geom_point(aes(y=time)) +
|
|
scale_y_continuous(trans=log2_trans()) +
|
|
labs(x="Granularity", y="Time (s)",
|
|
title="Creams granularity",
|
|
subtitle=input_file) +
|
|
theme_bw() +
|
|
theme(plot.subtitle=element_text(size=8))
|
|
print(p)
|
|
dev.off()
|