bscpkgs/garlic/fig/hpcg/granularity.R

63 lines
1.7 KiB
R

library(ggplot2)
library(dplyr, warn.conflicts = FALSE)
library(scales)
library(jsonlite)
library(viridis, warn.conflicts = FALSE)
args = commandArgs(trailingOnly=TRUE)
if (length(args)>0) { input_file = args[1] } else { input_file = "input" }
df = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
jsonlite::flatten() %>%
select(config.nblocks,
config.ncomms,
config.hw.cpusPerSocket,
config.blocksPerCpu,
unit,
time) %>%
rename(nblocks=config.nblocks,
ncomms=config.ncomms,
blocksPerCpu=config.blocksPerCpu) %>%
mutate(nblocks = as.factor(nblocks)) %>%
mutate(blocksPerCpu = as.factor(blocksPerCpu)) %>%
mutate(unit = as.factor(unit)) %>%
group_by(unit) %>%
mutate(median.time = median(time)) %>%
mutate(normalized.time = time / median.time - 1) %>%
mutate(log.median.time = log(median.time)) %>%
ungroup()
dpi=300
h=5
w=5
p = ggplot(df, aes(x=blocksPerCpu, y=normalized.time)) +
geom_boxplot() +
geom_hline(yintercept=c(-0.01, 0.01), linetype="dashed", color="red") +
theme_bw() +
labs(x="Blocks per CPU", y="Normalized time", title="HPCG granularity: normalized time",
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
ggsave("normalized.time.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("normalized.time.pdf", plot=p, width=w, height=h, dpi=dpi)
p = ggplot(df, aes(x=blocksPerCpu, y=time)) +
geom_point(shape=21, size=3) +
theme_bw() +
labs(x="Blocks per CPU", y="Time (s)", title="HPCG granularity: time",
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
ggsave("time.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("time.pdf", plot=p, width=w, height=h, dpi=dpi)