bscpkgs/garlic/fig/saiph/scalability-saiph.R
2021-04-01 19:25:37 +02:00

157 lines
5.0 KiB
R

library(ggplot2)
library(dplyr)
library(scales)
library(jsonlite)
library(viridis)
args=commandArgs(trailingOnly=TRUE)
# Read the timetable from args[1]
input_file = "input.json"
if (length(args)>0) { input_file = args[1] }
# Load the dataset in NDJSON format
dataset = jsonlite::stream_in(file(input_file)) %>%
jsonlite::flatten()
# Create a data frame selecting the desired variables from the data set
df = select(dataset, config.nbly, config.nblz, config.nodes, time, total_time) %>%
rename(nbly=config.nbly, nblz=config.nblz, nnodes=config.nodes)
# Declare variables as factors
# --> R does not allow to operate with factors: operate before casting to factors
df$nblPerProc = as.factor(round((df$nbly * df$nblz) / 24, digits = 2))
df$biggernbly = as.factor(df$nbly > df$nblz)
df$nbly = as.factor(df$nbly)
df$nblz = as.factor(df$nblz)
df$nodes = as.factor(df$nnodes)
# Create a new data frame including statistics
D=group_by(df, nbly, nblz, nblPerProc, nodes) %>%
mutate(tmedian = median(time)) %>%
mutate(ttmedian = median(total_time)) %>%
mutate(tnorm = time / tmedian - 1) %>%
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) %>%
mutate(tn = tmedian * nnodes) %>%
ungroup()
D$bad = as.factor(D$bad)
### Std output data frame D
print(D)
### Output figure size
ppi=300
h=5
w=8
####################################################################
### Boxplot
####################################################################
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
#
#
# Create the plot with the normalized time vs nblocks
p = ggplot(data=D, aes(x=nblPerProc, y=tnorm, color=bad)) +
# Labels
labs(x="nblPerProc", y="Normalized time",
title=sprintf("Saiph-Heat3D normalized time"),
subtitle=input_file) +
# Add the maximum allowed error lines
geom_hline(yintercept=c(-0.01, 0.01),
linetype="dashed", color="gray") +
# Draw boxplots
geom_boxplot() +
scale_color_manual(values=c("black", "brown")) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = "none")
# Render the plot
print(p)
## Save the png image
dev.off()
####################################################################
### XY Scatter plot - measured_time & total_time vs tasks per cpu
####################################################################
####################################################################
### XY Scatter plot - time vs tasks per cpu
####################################################################
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
## Create the plot with the normalized time vs nblocks per proc
p = ggplot(D, aes(x=nblPerProc, y=time)) +
labs(x="nblPerProc", y="Time (s)",
title=sprintf("Saiph-Heat3D granularity"),
subtitle=input_file) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = c(0.5, 0.88)) +
geom_point(aes(color=nodes), shape=21, size=3) +
scale_y_continuous(trans=log2_trans())
# Render the plot
print(p)
## Save the png image
dev.off()
####################################################################
### XY Scatter plot - median time vs tasks per cpu
####################################################################
png("scatter2.png", width=w*ppi, height=h*ppi, res=ppi)
## Create the plot with the normalized time vs nblocks per proc
p = ggplot(D, aes(x=nblPerProc, y=tn)) +
labs(x="nblPerProc", y="Median Time (s) * nodes",
title=sprintf("Saiph-Heat3D granularity"),
subtitle=input_file) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = c(0.5, 0.88)) +
geom_point(aes(color=nodes), shape=21, size=3) +
labs(color = "nbly > nblz")
scale_y_continuous(trans=log2_trans())
# Render the plot
print(p)
# Save the png image
dev.off()
####################################################################
### Heatmap plot - median time vs tasks per cpu per dimension
####################################################################
heatmap_plot = function(df, colname, title) {
p = ggplot(df, aes(x=nbly, y=nblz, fill=!!ensym(colname))) +
geom_raster() +
#scale_fill_gradient(high="black", low="white") +
scale_fill_viridis(option="plasma") +
coord_fixed() +
theme_bw() +
theme(axis.text.x=element_text(angle = -45, hjust = 0)) +
theme(plot.subtitle=element_text(size=8)) +
guides(fill = guide_colorbar(barwidth=12, title.vjust=0.8)) +
labs(x="nbly", y="nblz",
title=sprintf("Heat granularity: %s", title),
subtitle=input_file) +
theme(legend.position="bottom")+
facet_wrap( ~ nodes)
k=1
ggsave(sprintf("%s.png", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
ggsave(sprintf("%s.pdf", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
}
# call heatmap function with colname and legend title
heatmap_plot(D, "tmedian", "time")