bscpkgs/garlic/fig/creams/ss.R

128 lines
4.2 KiB
R

library(ggplot2)
library(dplyr, warn.conflicts = FALSE)
library(scales)
library(jsonlite)
library(viridis, warn.conflicts = FALSE)
library(stringr)
args = commandArgs(trailingOnly=TRUE)
# Set the input dataset if given in argv[1], or use "input" as default
if (length(args)>0) { input_file = args[1] } else { input_file = "input" }
df = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
jsonlite::flatten() %>%
select(unit,
config.nodes,
config.gitBranch,
config.granul,
config.iterations,
time,
total_time) %>%
rename(nodes=config.nodes,
gitBranch=config.gitBranch,
granul=config.granul,
iterations=config.iterations) %>%
# Remove the "garlic/" prefix from the gitBranch
mutate(branch = str_replace(gitBranch, "garlic/", "")) %>%
# Computations before converting to factor
mutate(time.nodes = time * nodes) %>%
mutate(time.nodes.iter = time.nodes / iterations) %>%
# Convert to factors
mutate(unit = as.factor(unit)) %>%
mutate(nodes = as.factor(nodes)) %>%
mutate(gitBranch = as.factor(gitBranch)) %>%
mutate(granul = as.factor(granul)) %>%
mutate(iterations = as.factor(iterations)) %>%
mutate(unit = as.factor(unit)) %>%
# Compute median times
group_by(unit) %>%
mutate(median.time = median(time)) %>%
mutate(median.time.nodes = median(time.nodes)) %>%
mutate(normalized.time = time / median.time - 1) %>%
mutate(log.median.time = log(median.time)) %>%
mutate(median.time.nodes.iter = median(time.nodes.iter)) %>%
ungroup()
dpi = 300
h = 5
w = 8
# ---------------------------------------------------------------------
p = ggplot(df, aes(x=nodes, y=normalized.time, fill=granul, color=iterations)) +
geom_boxplot() +
geom_hline(yintercept=c(-0.01, 0.01), linetype="dashed", color="red") +
theme_bw() +
facet_wrap(branch ~ .) +
labs(x="nodes", y="Normalized time",
title="Creams strong scaling: normalized time",
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
ggsave("normalized.time.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("normalized.time.pdf", plot=p, width=w, height=h, dpi=dpi)
# ---------------------------------------------------------------------
p = ggplot(df, aes(x=nodes, y=time, color=gitBranch)) +
geom_point(shape=21, size=3) +
geom_line(aes(y=median.time, group=gitBranch)) +
theme_bw() +
# facet_wrap(branch ~ .) +
labs(x="nodes", y="Time (s)", title="Creams strong scaling: time",
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
ggsave("time.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("time.pdf", plot=p, width=w, height=h, dpi=dpi)
# ---------------------------------------------------------------------
p = ggplot(df, aes(x=nodes, y=median.time.nodes, color=branch)) +
geom_point(shape=21, size=3) +
geom_line(aes(group=branch)) +
theme_bw() +
#facet_wrap(branch ~ .) +
labs(x="nodes", y="Median time * nodes (s)", title="Creams strong scaling: median time * nodes",
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
ggsave("median.time.nodes.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("median.time.nodes.pdf", plot=p, width=w, height=h, dpi=dpi)
# ---------------------------------------------------------------------
p = ggplot(df, aes(x=nodes, y=time.nodes, color=branch)) +
geom_boxplot() +
theme_bw() +
facet_wrap(branch ~ .) +
labs(x="nodes", y="Time * nodes (s)", title="Creams strong scaling: time * nodes",
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
ggsave("time.nodes.boxplot.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("time.nodes.boxplot.pdf", plot=p, width=w, height=h, dpi=dpi)
# ---------------------------------------------------------------------
#p = ggplot(df, aes(x=nodes, y=time.nodes.iter, color=branch)) +
# geom_point(shape=21, size=3) +
# geom_line(aes(y=median.time.nodes.iter, group=interaction(granul,iterations))) +
# theme_bw() +
# #facet_wrap(branch ~ .) +
# labs(x="nodes", y="Time * nodes / iterations (s)",
# title="Creams strong scaling: time * nodes / iterations",
# subtitle=input_file) +
# theme(plot.subtitle=element_text(size=8))
#
#ggsave("time.nodes.iter.png", plot=p, width=w, height=h, dpi=dpi)
#ggsave("time.nodes.iter.pdf", plot=p, width=w, height=h, dpi=dpi)