bscpkgs/garlic/fig/heat/cache.R

52 lines
1.2 KiB
R

library(ggplot2)
library(dplyr)
library(scales)
library(jsonlite)
args=commandArgs(trailingOnly=TRUE)
# Read the timetable from args[1]
input_file = "input.json"
if (length(args)>0) { input_file = args[1] }
# Load the dataset in NDJSON format
dataset = jsonlite::stream_in(file(input_file)) %>%
jsonlite::flatten()
# We only need the nblocks and time
df = select(dataset, config.cbs, config.rbs, perf.cache_misses) %>%
rename(cbs=config.cbs, rbs=config.rbs)
df$cbs = as.factor(df$cbs)
df$rbs = as.factor(df$rbs)
# Normalize the time by the median
df=group_by(df, cbs, rbs) %>%
mutate(median.misses = median(perf.cache_misses)) %>%
mutate(log.median.misses = log(median.misses)) %>%
ungroup()
ppi=300
h=5
w=5
png("heatmap.png", width=1.5*w*ppi, height=h*ppi, res=ppi)
#
## Create the plot with the normalized time vs nblocks
p = ggplot(df, aes(x=cbs, y=rbs, fill=log.median.misses)) +
geom_raster() +
scale_fill_gradient(high="black", low="white") +
coord_fixed() +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
labs(x="cbs", y="rbs",
title=sprintf("Heat granularity: cache misses"),
subtitle=input_file)
# Render the plot
print(p)
# Save the png image
dev.off()