bscpkgs/garlic/fig/heat/granul.R

121 lines
2.6 KiB
R

library(ggplot2)
library(dplyr)
library(scales)
library(jsonlite)
args=commandArgs(trailingOnly=TRUE)
# Read the timetable from args[1]
input_file = "input.json"
if (length(args)>0) { input_file = args[1] }
# Load the dataset in NDJSON format
dataset = jsonlite::stream_in(file(input_file)) %>%
jsonlite::flatten()
# We only need the nblocks and time
df = select(dataset, config.cbs, config.rbs, time) %>%
rename(cbs=config.cbs, rbs=config.rbs)
df$cbs = as.factor(df$cbs)
df$rbs = as.factor(df$rbs)
# Normalize the time by the median
df=group_by(df, cbs, rbs) %>%
mutate(mtime = median(time)) %>%
mutate(tnorm = time / mtime - 1) %>%
mutate(logmtime = log(mtime)) %>%
ungroup() %>%
filter(between(mtime, mean(time) - (1 * sd(time)),
mean(time) + (1 * sd(time))))
ppi=300
h=5
w=5
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
#
#
#
# Create the plot with the normalized time vs nblocks
p = ggplot(data=df, aes(x=cbs, y=tnorm)) +
# Labels
labs(x="cbs", y="Normalized time",
title=sprintf("Heat normalized time"),
subtitle=input_file) +
# Center the title
#theme(plot.title = element_text(hjust = 0.5)) +
# Black and white mode (useful for printing)
#theme_bw() +
# Add the maximum allowed error lines
geom_hline(yintercept=c(-0.01, 0.01),
linetype="dashed", color="red") +
# Draw boxplots
geom_boxplot() +
#scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = c(0.85, 0.85)) #+
# Render the plot
print(p)
## Save the png image
dev.off()
#
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
#
## Create the plot with the normalized time vs nblocks
p = ggplot(df, aes(x=cbs, y=time, linetype=rbs, group=rbs)) +
labs(x="cbs", y="Time (s)",
title=sprintf("Heat granularity"),
subtitle=input_file) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = c(0.5, 0.88)) +
geom_point(shape=21, size=3) +
geom_line(aes(y=mtime)) +
#scale_x_continuous(trans=log2_trans()) +
scale_y_continuous(trans=log2_trans())
# Render the plot
print(p)
# Save the png image
dev.off()
png("heatmap.png", width=w*ppi, height=h*ppi, res=ppi)
#
## Create the plot with the normalized time vs nblocks
p = ggplot(df, aes(x=cbs, y=rbs, fill=logmtime)) +
geom_raster() +
scale_fill_gradient(high="black", low="white") +
coord_fixed() +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
labs(x="cbs", y="rbs",
title=sprintf("Heat granularity"),
subtitle=input_file)
# Render the plot
print(p)
# Save the png image
dev.off()