library(ggplot2) library(dplyr, warn.conflicts = FALSE) library(scales) library(jsonlite) library(viridis, warn.conflicts = FALSE) library(stringr) args = commandArgs(trailingOnly=TRUE) # Set the input dataset if given in argv[1], or use "input" as default if (length(args)>0) { input_file = args[1] } else { input_file = "input" } if (length(args)>1) { output = args[2] } else { output = "?" } df = jsonlite::stream_in(file(input_file), verbose=FALSE) %>% jsonlite::flatten() %>% select(unit, config.cbs, config.rbs, time, total_time) %>% rename(cbs=config.cbs, rbs=config.rbs) %>% # Convert to factors mutate(cbs = as.factor(cbs)) %>% mutate(rbs = as.factor(rbs)) %>% mutate(unit = as.factor(unit)) %>% # Compute median times group_by(unit) %>% mutate(median.time = median(time)) %>% mutate(normalized.time = time / median.time - 1) %>% mutate(log.median.time = log(median.time)) %>% ungroup() dpi = 300 h = 6 w = 6 # --------------------------------------------------------------------- p = ggplot(df, aes(x=cbs, y=normalized.time)) + geom_boxplot() + geom_hline(yintercept=c(-0.01, 0.01), linetype="dashed", color="red") + theme_bw() + labs(y="Normalized time", title="Heat granularity: normalized time", subtitle=output) + theme(plot.subtitle=element_text(size=8)) ggsave("normalized.time.png", plot=p, width=w, height=h, dpi=dpi) ggsave("normalized.time.pdf", plot=p, width=w, height=h, dpi=dpi) # --------------------------------------------------------------------- p = ggplot(df, aes(x=cbs, y=time)) + geom_point(shape=21, size=3) + geom_line(aes(y=median.time, group=0)) + theme_bw() + labs(y="Time (s)", title="Heat granularity: time", subtitle=output) + theme(plot.subtitle=element_text(size=8)) ggsave("time.png", plot=p, width=w, height=h, dpi=dpi) ggsave("time.pdf", plot=p, width=w, height=h, dpi=dpi)