library(ggplot2) library(dplyr) library(scales) library(jsonlite) library(viridis) args=commandArgs(trailingOnly=TRUE) # Read the timetable from args[1] input_file = "input.json" if (length(args)>0) { input_file = args[1] } # Load the dataset in NDJSON format dataset = jsonlite::stream_in(file(input_file)) %>% jsonlite::flatten() # We only need the nblocks and time df = select(dataset, config.cbs, config.rbs, perf.cache_misses, perf.instructions, perf.cycles, time) %>% rename(cbs=config.cbs, rbs=config.rbs) df$cbs = as.factor(df$cbs) df$rbs = as.factor(df$rbs) # Normalize the time by the median df=group_by(df, cbs, rbs) %>% mutate(median.time = median(time)) %>% mutate(log.median.time = log(median.time)) %>% mutate(median.misses = median(perf.cache_misses)) %>% mutate(log.median.misses = log(median.misses)) %>% mutate(median.instr= median(perf.instructions)) %>% mutate(log.median.instr= log(median.instr)) %>% mutate(median.cycles = median(perf.cycles)) %>% mutate(median.cpi = median.cycles / median.instr) %>% mutate(median.ipc = median.instr / median.cycles) %>% mutate(median.ips = median.instr / median.time) %>% mutate(median.cps = median.cycles / median.time) %>% ungroup()# %>% heatmap_plot = function(df, colname, title) { p = ggplot(df, aes(x=cbs, y=rbs, fill=!!ensym(colname))) + geom_raster() + #scale_fill_gradient(high="black", low="white") + scale_fill_viridis(option="plasma") + coord_fixed() + theme_bw() + theme(axis.text.x=element_text(angle = -45, hjust = 0)) + theme(plot.subtitle=element_text(size=8)) + #guides(fill = guide_colorbar(barwidth=15, title.position="top")) + guides(fill = guide_colorbar(barwidth=12, title.vjust=0.8)) + labs(x="cbs", y="rbs", title=sprintf("Heat granularity: %s", title), subtitle=input_file) + theme(legend.position="bottom") k=1 ggsave(sprintf("%s.png", colname), plot=p, width=4.8*k, height=5*k, dpi=300) ggsave(sprintf("%s.pdf", colname), plot=p, width=4.8*k, height=5*k, dpi=300) } heatmap_plot(df, "median.misses", "cache misses") heatmap_plot(df, "log.median.misses", "cache misses") heatmap_plot(df, "median.instr", "instructions") heatmap_plot(df, "log.median.instr", "instructions") heatmap_plot(df, "median.cycles", "cycles") heatmap_plot(df, "median.ipc", "IPC") heatmap_plot(df, "median.cpi", "cycles/instruction") heatmap_plot(df, "median.ips", "instructions/second") heatmap_plot(df, "median.cps", "cycles/second") cutlevel = 0.5 # To plot the median.time we crop the larger values: df_filtered = filter(df, between(median.time, median(time) - (cutlevel * sd(time)), median(time) + (cutlevel * sd(time)))) heatmap_plot(df_filtered, "median.time", "execution time (seconds)") heatmap_plot(df_filtered, "log.median.time", "execution time")