library(ggplot2) library(dplyr, warn.conflicts = FALSE) library(scales) library(jsonlite) args=commandArgs(trailingOnly=TRUE) # Read the timetable from args[1] input_file = "input.json" if (length(args)>0) { input_file = args[1] } # Load the dataset in NDJSON format dataset = jsonlite::stream_in(file(input_file), verbose=FALSE) %>% jsonlite::flatten() # We only need the nblocks and time df = select(dataset, config.unitName, config.nodes, config.ntasksPerNode, config.cpusPerTask, config.PSM2_MQ_EAGER_SDMA_SZ, config.PSM2_MTU, size, bw, config.iterations) %>% rename(unitName=config.unitName, iterations=config.iterations, PSM2_MQ_EAGER_SDMA_SZ=config.PSM2_MQ_EAGER_SDMA_SZ, PSM2_MTU=config.PSM2_MTU) nodes = unique(df$config.nodes) tasksPerNode = unique(df$config.ntasksPerNode) cpusPerTask = unique(df$config.cpusPerTask) df$unitName = as.factor(df$unitName) df$sizeFactor = as.factor(df$size) df$sizeKB = df$size / 1024 df$PSM2_MQ_EAGER_SDMA_SZ.f = as.factor(df$PSM2_MQ_EAGER_SDMA_SZ) df$PSM2_MTU.f = as.factor(df$PSM2_MTU) iterations = unique(df$iterations) df = group_by(df, unitName, sizeFactor) %>% mutate(medianBw = median(bw)) %>% ungroup() breaks = 10^(-10:10) minor_breaks <- rep(1:9, 21)*(10^rep(-10:10, each=9)) ppi=150 h=6 w=8 p = ggplot(data=df, aes(x=sizeKB, y=bw)) + labs(x="Message size (KB)", y="Bandwidth (MB/s)", title=sprintf("OSU benchmark: osu_bw --iterations %d", iterations), subtitle=input_file) + geom_point(shape=21, size=3) + geom_vline(aes(xintercept = PSM2_MQ_EAGER_SDMA_SZ/1024), color="blue") + geom_vline(aes(xintercept = PSM2_MTU / 1024), color="red") + #annotate("text", x = 10.2, y = 8.5e3, label = "MTU = 10KB", color="red", hjust=0) + facet_wrap(vars(PSM2_MTU.f), nrow=3, labeller = "label_both") + scale_x_continuous(breaks = unique(df$sizeKB), minor_breaks=NULL) + theme_bw() ggsave("bw.png", plot=p, width=w, height=h, dpi=ppi) ggsave("bw.pdf", plot=p, width=w, height=h, dpi=ppi)