library(ggplot2) library(dplyr, warn.conflicts = FALSE) library(scales) library(jsonlite) library(viridis, warn.conflicts = FALSE) library(stringr) args = commandArgs(trailingOnly=TRUE) # Set the input dataset if given in argv[1], or use "input" as default if (length(args)>0) { input_file = args[1] } else { input_file = "input" } if (length(args)>1) { output = args[2] } else { output = "?" } df = jsonlite::stream_in(file(input_file), verbose=FALSE) %>% jsonlite::flatten() %>% select(unit, config.nodes, config.gitBranch, config.granul, config.iterations, config.sizeFactor, config.nz, time, total_time) %>% rename(nodes=config.nodes, gitBranch=config.gitBranch, granul=config.granul, sizeFactor=config.sizeFactor, nz=config.nz, iterations=config.iterations) %>% # Remove the "garlic/" prefix from the gitBranch mutate(branch = str_replace(gitBranch, "garlic/", "")) %>% # Computations before converting to factor mutate(time.nodes = time * nodes) %>% mutate(time.elem = time / sizeFactor) %>% mutate(time.nodes.iter = time.nodes / iterations) %>% # Convert to factors mutate(unit = as.factor(unit)) %>% mutate(nodes = as.factor(nodes)) %>% mutate(gitBranch = as.factor(gitBranch)) %>% mutate(granul = as.factor(granul)) %>% mutate(iterations = as.factor(iterations)) %>% mutate(sizeFactor = as.factor(sizeFactor)) %>% mutate(nz = as.factor(nz)) %>% mutate(unit = as.factor(unit)) %>% # Compute median times group_by(unit) %>% mutate(median.time = median(time)) %>% mutate(median.time.nodes = median(time.nodes)) %>% mutate(median.time.elem = median(time.elem)) %>% mutate(normalized.time = time / median.time - 1) %>% mutate(log.median.time = log(median.time)) %>% mutate(log.median.time.elem = log(median.time.elem)) %>% mutate(median.time.nodes.iter = median(time.nodes.iter)) %>% ungroup() %>% group_by(sizeFactor) %>% mutate(optimal.granul = (median.time.elem == min(median.time.elem))) %>% ungroup() dfopt = df %>% filter(optimal.granul == TRUE) dpi = 300 h = 4 w = 10 # --------------------------------------------------------------------- #p = ggplot(df, aes(x=sizeFactor, y=normalized.time, fill=granul, color=iterations)) + # geom_boxplot() + # geom_hline(yintercept=c(-0.01, 0.01), linetype="dashed", color="red") + # theme_bw() + # facet_wrap(branch ~ .) + # labs(x="nodes", y="Normalized time", # title="Creams strong scaling: normalized time", # subtitle=output) + # theme(plot.subtitle=element_text(size=8)) # #ggsave("normalized.time.png", plot=p, width=w, height=h, dpi=dpi) #ggsave("normalized.time.pdf", plot=p, width=w, height=h, dpi=dpi) # --------------------------------------------------------------------- p = ggplot(df, aes(x=granul, y=time.elem, color=branch)) + geom_point(shape=21, size=3) + # geom_line(aes(y=median.time, group=gitBranch)) + theme_bw() + facet_wrap(sizeFactor ~ ., labeller=label_both, nrow=1) + labs(x="Granularity", y="Time / k (s)", #title="Creams size: time per object", subtitle=output) + theme(plot.subtitle=element_text(size=8, family="mono"), legend.position="bottom") ggsave("time.png", plot=p, width=w, height=h, dpi=dpi) ggsave("time.pdf", plot=p, width=w, height=h, dpi=dpi) # --------------------------------------------------------------------- p = ggplot(df, aes(x=granul, y=median.time.elem, color=sizeFactor)) + geom_line(aes(group=sizeFactor)) + geom_point(data=dfopt, aes(x=granul, y=median.time.elem)) + theme_bw() + labs(x="Granularity", y="Time / k (s)", color="Size factor k", subtitle=output) + theme(plot.subtitle=element_text(size=8, family="mono"), legend.position="bottom") ggsave("median.time.png", plot=p, width=5, height=5, dpi=dpi) ggsave("median.time.pdf", plot=p, width=5, height=5, dpi=dpi) # --------------------------------------------------------------------- p = ggplot(df, aes(x=granul, y=sizeFactor, fill=log.median.time.elem)) + geom_raster() + scale_fill_viridis(option="plasma") + coord_fixed() + theme_bw() + theme(axis.text.x=element_text(angle = -45, hjust = 0)) + theme(plot.subtitle=element_text(size=8)) + #guides(fill = guide_colorbar(barwidth=15, title.position="top")) + guides(fill = guide_colorbar(barwidth=12, title.vjust=0.8)) + labs(x="Granularity", y="Size factor", fill="Time / k (s)", subtitle=output) + theme(plot.subtitle=element_text(size=8, family="mono"), legend.position="bottom") k=1 ggsave("heatmap.png", plot=p, width=4.8*k, height=5*k, dpi=300) ggsave("heatmap.pdf", plot=p, width=4.8*k, height=5*k, dpi=300)