library(ggplot2) library(dplyr) library(scales) library(jsonlite) args=commandArgs(trailingOnly=TRUE) # Read the timetable from args[1] input_file = "input.json" if (length(args)>0) { input_file = args[1] } # Load the dataset in NDJSON format dataset = jsonlite::stream_in(file(input_file)) %>% jsonlite::flatten() # We only need the nblocks and time #df = select(dataset, config.nbly, config.nodes, time, total_time, config.gitCommit) %>% # rename(nbly=config.nbly, nnodes=config.nodes, gitCommit=config.gitCommit) df = select(dataset, config.nbly, config.nblz, config.nbltotal, config.nodes, time, total_time) %>% rename(nbly=config.nbly, nblz=config.nblz, nbltotal=config.nbltotal, nnodes=config.nodes) df$nbly = as.factor(df$nbly) df$nblz = as.factor(df$nblz) df$nblPerProc = as.factor(df$nbltotal / 24) df$nbltotal = as.factor(df$nbltotal) df$nodes = as.factor(df$nnodes) #df$gitCommit = as.factor(df$gitCommit) # Normalize the time by the median #D=group_by(df, nbly, nodes, gitCommit) %>% D=group_by(df, nbly, nblz, nbltotal, nodes) %>% mutate(tmedian = median(time)) %>% mutate(ttmedian = median(total_time)) %>% mutate(tnorm = time / tmedian - 1) %>% mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) %>% mutate(tn = tmedian * nnodes) %>% ungroup() D$bad = as.factor(D$bad) print(D) ppi=300 h=5 w=8 png("box.png", width=w*ppi, height=h*ppi, res=ppi) # # # # Create the plot with the normalized time vs nblocks p = ggplot(data=D, aes(x=nbly, y=tnorm, color=bad)) + # Labels labs(x="nbly", y="Normalized time", title=sprintf("Saiph-Heat3D normalized time"), subtitle=input_file) + # Center the title #theme(plot.title = element_text(hjust = 0.5)) + # Black and white mode (useful for printing) #theme_bw() + # Add the maximum allowed error lines geom_hline(yintercept=c(-0.01, 0.01), linetype="dashed", color="gray") + # Draw boxplots geom_boxplot() + scale_color_manual(values=c("black", "brown")) + #scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + theme(legend.position = "none") #theme(legend.position = c(0.85, 0.85)) # Render the plot print(p) ## Save the png image dev.off() # png("scatter.png", width=w*ppi, height=h*ppi, res=ppi) # ## Create the plot with the normalized time vs nblocks p = ggplot(D, aes(x=nbltotal, y=time)) + labs(x="nbltotal", y="Time (s)", title=sprintf("Saiph-Heat3D granularity"), subtitle=input_file) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + theme(legend.position = c(0.5, 0.88)) + geom_point(aes(color=nodes), shape=21, size=3) + #scale_x_continuous(trans=log2_trans()) + scale_y_continuous(trans=log2_trans()) # facet_wrap( ~ gitCommit) # Render the plot print(p) # Save the png image dev.off() png("scatter1.png", width=w*ppi, height=h*ppi, res=ppi) # ## Create the plot with the normalized time vs nblocks p = ggplot(D, aes(x=nblPerProc, y=time)) + labs(x="nblPerProc", y="Time (s)", title=sprintf("Saiph-Heat3D granularity per nodes"), subtitle=input_file) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + theme(legend.position = c(0.5, 0.5)) + geom_point(aes(color=nblz), shape=21, size=3) + #scale_x_continuous(trans=log2_trans()) + scale_y_continuous(trans=log2_trans()) + facet_wrap( ~ nodes) # Render the plot print(p) # Save the png image dev.off() png("wasted.png", width=w*ppi, height=h*ppi, res=ppi) # ## Create the plot with the normalized time vs nblocks p = ggplot(D, aes(x=nbly, y=time)) + labs(x="nbly", y="Time (s)", title=sprintf("Saiph-Heat3D granularity"), subtitle=input_file) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + geom_point(shape=21, size=3) + geom_point(aes(y=total_time), shape=1, size=3, color="red") + geom_line(aes(y=tmedian, color=nodes, group=nodes)) + geom_line(aes(y=ttmedian, color=nodes, group=nodes)) + #scale_x_continuous(trans=log2_trans()) + scale_y_continuous(trans=log2_trans()) # facet_wrap( ~ gitCommit) # Render the plot print(p) # Save the png image dev.off() png("test.png", width=w*ppi, height=h*ppi, res=ppi) # ## Create the plot with the normalized time vs nblocks p = ggplot(D, aes(x=nbltotal, y=tn)) + labs(x="nbltotal", y="Time (s) * nodes", title=sprintf("Saiph-Heat3D granularity"), subtitle=input_file) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + geom_point(shape=21, size=3) + geom_line(aes(color=nodes, group=nodes)) + #scale_x_continuous(trans=log2_trans()) + scale_y_continuous(trans=log2_trans()) # facet_wrap( ~ gitCommit) # Render the plot print(p) # Save the png image dev.off() png("test1.png", width=w*ppi, height=h*ppi, res=ppi) # ## Create the plot with the normalized time vs nblocks p = ggplot(D, aes(x=nblPerProc, y=tn)) + labs(x="nblPerProc", y="Time (s) * nodes", title=sprintf("Saiph-Heat3D granularity per nblz blocks"), subtitle=input_file) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + geom_point(shape=21, size=3) + geom_line(aes(color=nodes, group=nodes)) + #scale_x_continuous(trans=log2_trans()) + scale_y_continuous(trans=log2_trans()) + facet_wrap( ~ nblz) # Render the plot print(p) # Save the png image dev.off()