library(ggplot2) library(dplyr) library(scales) library(jsonlite) args=commandArgs(trailingOnly=TRUE) # Read the timetable from args[1] input_file = "input.json" if (length(args)>0) { input_file = args[1] } # Load the dataset in NDJSON format dataset = jsonlite::stream_in(file(input_file)) %>% jsonlite::flatten() # We only need the nblocks and time df = select(dataset, config.cbs, config.rbs, perf.cache_misses) %>% rename(cbs=config.cbs, rbs=config.rbs) df$cbs = as.factor(df$cbs) df$rbs = as.factor(df$rbs) # Normalize the time by the median df=group_by(df, cbs, rbs) %>% mutate(median.misses = median(perf.cache_misses)) %>% mutate(log.median.misses = log(median.misses)) %>% ungroup() ppi=300 h=5 w=5 png("heatmap.png", width=1.5*w*ppi, height=h*ppi, res=ppi) # ## Create the plot with the normalized time vs nblocks p = ggplot(df, aes(x=cbs, y=rbs, fill=log.median.misses)) + geom_raster() + scale_fill_gradient(high="black", low="white") + coord_fixed() + theme_bw() + theme(plot.subtitle=element_text(size=8)) + labs(x="cbs", y="rbs", title=sprintf("Heat granularity: cache misses"), subtitle=input_file) # Render the plot print(p) # Save the png image dev.off()