library(ggplot2) library(dplyr) library(scales) library(jsonlite) args=commandArgs(trailingOnly=TRUE) # Read the timetable from args[1] input_file = "input.json" if (length(args)>0) { input_file = args[1] } # Load the dataset in NDJSON format dataset = jsonlite::stream_in(file(input_file), verbose=FALSE) %>% jsonlite::flatten() # We only need some colums df = select(dataset, unit, config.nodes, config.gitBranch, time) %>% rename(nodes=config.nodes, gitBranch=config.gitBranch) df$unit = as.factor(df$unit) df$nnodes = df$nodes df$nodes = as.factor(df$nodes) df$gitBranch = as.factor(df$gitBranch) # Remove the "garlic/" prefix from the gitBranch levels(df$gitBranch) <- substring((levels(df$gitBranch)), 8) # Compute new columns D=group_by(df, unit) %>% mutate(tnorm = time / median(time) - 1) %>% mutate(bad = ifelse(max(abs(tnorm)) >= 0.01, 1, 0)) %>% mutate(variability = ifelse(bad > 0, "large", "ok")) %>% mutate(mtime = median(time)) %>% mutate(nmtime = mtime*nnodes) %>% mutate(ntime = time*nnodes) %>% ungroup() %>% mutate(min_nmtime = min(nmtime)) %>% mutate(rnmtime = nmtime / min_nmtime) %>% mutate(rntime = ntime / min_nmtime) %>% mutate(rmeff = 1.0 / rnmtime) %>% mutate(reff = 1.0 / rntime) %>% group_by(gitBranch) %>% mutate(tmax = max(mtime)) %>% mutate(speedup=tmax/time) %>% mutate(eff=speedup/nnodes) %>% mutate(mspeedup=tmax/mtime) %>% mutate(meff=mspeedup/nnodes) %>% ungroup() D$bad = as.factor(D$bad > 0) D$variability = as.factor(D$variability) ppi=300 h=5 w=5 png("variability.png", width=1.5*w*ppi, height=h*ppi, res=ppi) p = ggplot(data=D, aes(x=nodes, y=tnorm, color=variability)) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + # Add the maximum allowed error lines geom_hline(yintercept=c(-0.01, 0.01), linetype="dashed", color="gray") + # Draw boxplots geom_boxplot(aes(fill=gitBranch)) + scale_color_manual(values=c("brown", "black")) + # Labels labs(x="Nodes", y="Normalized time", title="Creams strong scaling", subtitle=input_file) print(p) dev.off() png("time.png", width=w*1.5*ppi, height=h*ppi, res=ppi) p = ggplot(D, aes(x=nodes, y=mtime, color=gitBranch)) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + geom_line(aes(group=gitBranch)) + #geom_point() + geom_point(aes(shape=variability), size=3) + scale_shape_manual(values=c(21, 19)) + # position=position_dodge(width=0.3)) + #scale_x_continuous(trans=log2_trans()) + scale_y_continuous(trans=log2_trans()) + labs(x="Nodes", y="Time (s)", title="Creams strong scaling (lower is better)", subtitle=input_file) print(p) dev.off() png("refficiency.png", width=w*1.5*ppi, height=h*ppi, res=ppi) p = ggplot(D, aes(x=nodes, y=rmeff, color=gitBranch)) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + geom_line(aes(group=gitBranch)) + geom_point(aes(shape=variability), size=3) + #geom_boxplot(aes(y=reff), # position=position_dodge(width=0.0)) + scale_shape_manual(values=c(21, 19)) + #geom_point(aes(y=rntime), # position=position_dodge(width=0.3)) + #scale_x_continuous(trans=log2_trans()) + #scale_y_continuous(trans=log2_trans()) + labs(x="Nodes", y="Relative efficiency (to best)", title="Creams strong scaling (higher is better)", subtitle=input_file) print(p) dev.off()