library(ggplot2) library(dplyr, warn.conflicts = FALSE) library(scales) library(jsonlite) library(viridis, warn.conflicts = FALSE) args = commandArgs(trailingOnly=TRUE) if (length(args)>0) { input_file = args[1] } else { input_file = "input" } if (length(args)>1) { output = args[2] } else { output = "?" } df = jsonlite::stream_in(file(input_file), verbose=FALSE) %>% jsonlite::flatten() %>% select(config.nblocks, config.ncomms, config.hw.cpusPerSocket, config.blocksPerCpu, unit, time) %>% rename(nblocks=config.nblocks, ncomms=config.ncomms, blocksPerCpu=config.blocksPerCpu) %>% mutate(nblocks = as.factor(nblocks)) %>% mutate(blocksPerCpu = as.factor(blocksPerCpu)) %>% mutate(unit = as.factor(unit)) %>% group_by(unit) %>% mutate(median.time = median(time)) %>% mutate(normalized.time = time / median.time - 1) %>% mutate(log.median.time = log(median.time)) %>% ungroup() dpi=300 h=5 w=5 p = ggplot(df, aes(x=blocksPerCpu, y=normalized.time)) + geom_boxplot() + geom_hline(yintercept=c(-0.01, 0.01), linetype="dashed", color="red") + theme_bw() + labs(x="Blocks per CPU", y="Normalized time", title="HPCG granularity: normalized time", subtitle=output) + theme(plot.subtitle=element_text(size=8)) ggsave("normalized.time.png", plot=p, width=w, height=h, dpi=dpi) ggsave("normalized.time.pdf", plot=p, width=w, height=h, dpi=dpi) p = ggplot(df, aes(x=blocksPerCpu, y=time)) + geom_point(shape=21, size=3) + theme_bw() + labs(x="Blocks per CPU", y="Time (s)", title="HPCG granularity: time", subtitle=output) + theme(plot.subtitle=element_text(size=8)) ggsave("time.png", plot=p, width=w, height=h, dpi=dpi) ggsave("time.pdf", plot=p, width=w, height=h, dpi=dpi)