library(ggplot2) library(dplyr) library(scales) # Load the dataset df=read.table("/nix/store/vvfcimwp8mkv6kc5fs3rbyjy8grgpmmb-plot/data.csv", col.names=c("variant", "blocksize", "time")) # Use the blocksize as factor df$blocksize = as.factor(df$blocksize) # Split by malloc variant D=df %>% group_by(variant, blocksize) %>% mutate(tnorm = time / median(time) - 1) bs_unique = unique(df$blocksize) nbs=length(bs_unique) print(D) ppi=300 h=5 w=5 png("box.png", width=w*ppi, height=h*ppi, res=ppi) # # # # Create the plot with the normalized time vs blocksize p = ggplot(data=D, aes(x=blocksize, y=tnorm)) + # Labels labs(x="Block size", y="Normalized time", title="Nbody normalized time", subtitle="@expResult@") + # Center the title #theme(plot.title = element_text(hjust = 0.5)) + # Black and white mode (useful for printing) #theme_bw() + # Add the maximum allowed error lines geom_hline(yintercept=c(-0.01, 0.01), linetype="dashed", color="red") + # Draw boxplots geom_boxplot(aes(fill=variant)) + # # Use log2 scale in x # scale_x_continuous(trans=log2_trans(), # breaks=bs_unique) + # scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) + theme_bw() + theme(legend.position = c(0.85, 0.85)) #+ # Place each variant group in one separate plot #facet_wrap(~variant) # Render the plot print(p) ## Save the png image dev.off() # #png("scatter.png", width=w*ppi, height=h*ppi, res=ppi) # ## Create the plot with the normalized time vs blocksize #p = ggplot(D, aes(x=blocksize, y=time, color=variant)) + # # labs(x="Block size", y="Time (s)", # title="Nbody granularity", # subtitle="@expResult@") + # theme_bw() + # # geom_point(shape=21, size=3) + # scale_x_continuous(trans=log2_trans()) + # scale_y_continuous(trans=log2_trans()) # ## Render the plot #print(p) # ## Save the png image #dev.off()