library(ggplot2) library(dplyr) library(scales) library(jsonlite) args=commandArgs(trailingOnly=TRUE) # Read the timetable from args[1] input_file1 = "input1.json" if (length(args)>0) { input_file1 = args[1] } input_file2 = "input2.json" if (length(args)>1) { input_file2 = args[2] } # Load the dataset in NDJSON format dataset1 = jsonlite::stream_in(file(input_file1)) %>% jsonlite::flatten() dataset2 = jsonlite::stream_in(file(input_file2)) %>% jsonlite::flatten() # We only need the nblocks and time df1 = select(dataset1, config.nbx, time) %>% rename(nb1=config.nbx) df2 = select(dataset2, config.nby, time) %>% rename(nb2=config.nby) df1$nb1 = as.factor(df1$nb1) df2$nb2 = as.factor(df2$nb2) # Normalize the time by the median D1=group_by(df1, nb1) D2=group_by(df2, nb2) print(D1) print(D2) ppi=300 h=5 w=7 png("scatter_granularity_and_blocking.png", width=w*ppi, height=h*ppi, res=ppi) # ## Create the plot with the normalized time vs nblocks p = ggplot() + geom_point(data=D1, aes(x=nb1, y=time, colour = 'nbx-nby-nbz'), shape=1, size=4) + geom_point(data=D2, aes(x=nb2, y=time, colour = 'nby-nbz'), shape=1, size=4) + labs(x="nb", y="Time (s)", title=sprintf("Saiph-Heat3D granularity & blocking"), subtitle=input_file1) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + #theme(legend.position = c(0.5, 0.88)) + theme(legend.position = "right") + geom_point(shape=21, size=3) + #scale_x_continuous(trans=log2_trans()) + scale_y_continuous(trans=log2_trans()) + scale_colour_discrete("Blocked directions") # Render the plot print(p) # Save the png image dev.off()