library(ggplot2) library(dplyr) library(scales) library(jsonlite) args=commandArgs(trailingOnly=TRUE) # Read the timetable from args[1] input_file = "input.json" if (length(args)>0) { input_file = args[1] } # Load the dataset in NDJSON format dataset = jsonlite::stream_in(file(input_file)) %>% jsonlite::flatten() # We only need the nblocks and time df = select(dataset, config.unitName, size, latency) %>% rename(unitName=config.unitName) df$unitName = as.factor(df$unitName) df$sizeFactor = as.factor(df$size) ppi=300 h=8 w=12 png("latency.png", width=w*ppi, height=h*ppi, res=ppi) p = ggplot(data=df, aes(x=size, y=latency)) + labs(x="Size (bytes)", y="Latency (us)", title="OSU latency benchmark", subtitle=input_file) + geom_boxplot(aes(color=unitName, group=interaction(unitName, sizeFactor))) + scale_y_continuous(trans=log10_trans()) + scale_x_continuous(trans=log2_trans()) + theme_bw() + theme(legend.position = c(0.15, 0.9)) # Render the plot print(p) ## Save the png image dev.off()