Enable strictDeps on all our toplevel packages #12

Open
abonerib wants to merge 473 commits from abonerib/bscpkgs:enableStrictDeps into master
5 changed files with 659 additions and 1 deletions
Showing only changes of commit 3269d763aa - Show all commits

View File

@ -1,4 +1,4 @@
{ lib, config, ... }:
{ lib, config, pkgs, ... }:
{
# Configure Nvidia driver to use with CUDA
hardware.nvidia.package = config.boot.kernelPackages.nvidiaPackages.production;
@ -15,4 +15,6 @@
programs.nix-required-mounts.allowedPatterns.nvidia-gpu.paths = [
config.systemd.tmpfiles.settings.graphics-driver."/run/opengl-driver"."L+".argument
];
environment.systemPackages = [ pkgs.cudainfo ];
}

12
pkgs/cudainfo/Makefile Normal file
View File

@ -0,0 +1,12 @@
HOSTCXX ?= g++
NVCC := nvcc -ccbin $(HOSTCXX)
CXXFLAGS := -m64
# Target rules
all: cudainfo
cudainfo: cudainfo.cpp
$(NVCC) $(CXXFLAGS) -o $@ $<
clean:
rm -f cudainfo cudainfo.o

600
pkgs/cudainfo/cudainfo.cpp Normal file
View File

@ -0,0 +1,600 @@
/*
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
/* This sample queries the properties of the CUDA devices present in the system via CUDA Runtime API. */
// Shared Utilities (QA Testing)
// std::system includes
#include <memory>
#include <iostream>
#include <cuda_runtime.h>
// This will output the proper CUDA error strings in the event that a CUDA host call returns an error
#define checkCudaErrors(val) check ( (val), #val, __FILE__, __LINE__ )
// CUDA Runtime error messages
#ifdef __DRIVER_TYPES_H__
static const char *_cudaGetErrorEnum(cudaError_t error)
{
switch (error)
{
case cudaSuccess:
return "cudaSuccess";
case cudaErrorMissingConfiguration:
return "cudaErrorMissingConfiguration";
case cudaErrorMemoryAllocation:
return "cudaErrorMemoryAllocation";
case cudaErrorInitializationError:
return "cudaErrorInitializationError";
case cudaErrorLaunchFailure:
return "cudaErrorLaunchFailure";
case cudaErrorPriorLaunchFailure:
return "cudaErrorPriorLaunchFailure";
case cudaErrorLaunchTimeout:
return "cudaErrorLaunchTimeout";
case cudaErrorLaunchOutOfResources:
return "cudaErrorLaunchOutOfResources";
case cudaErrorInvalidDeviceFunction:
return "cudaErrorInvalidDeviceFunction";
case cudaErrorInvalidConfiguration:
return "cudaErrorInvalidConfiguration";
case cudaErrorInvalidDevice:
return "cudaErrorInvalidDevice";
case cudaErrorInvalidValue:
return "cudaErrorInvalidValue";
case cudaErrorInvalidPitchValue:
return "cudaErrorInvalidPitchValue";
case cudaErrorInvalidSymbol:
return "cudaErrorInvalidSymbol";
case cudaErrorMapBufferObjectFailed:
return "cudaErrorMapBufferObjectFailed";
case cudaErrorUnmapBufferObjectFailed:
return "cudaErrorUnmapBufferObjectFailed";
case cudaErrorInvalidHostPointer:
return "cudaErrorInvalidHostPointer";
case cudaErrorInvalidDevicePointer:
return "cudaErrorInvalidDevicePointer";
case cudaErrorInvalidTexture:
return "cudaErrorInvalidTexture";
case cudaErrorInvalidTextureBinding:
return "cudaErrorInvalidTextureBinding";
case cudaErrorInvalidChannelDescriptor:
return "cudaErrorInvalidChannelDescriptor";
case cudaErrorInvalidMemcpyDirection:
return "cudaErrorInvalidMemcpyDirection";
case cudaErrorAddressOfConstant:
return "cudaErrorAddressOfConstant";
case cudaErrorTextureFetchFailed:
return "cudaErrorTextureFetchFailed";
case cudaErrorTextureNotBound:
return "cudaErrorTextureNotBound";
case cudaErrorSynchronizationError:
return "cudaErrorSynchronizationError";
case cudaErrorInvalidFilterSetting:
return "cudaErrorInvalidFilterSetting";
case cudaErrorInvalidNormSetting:
return "cudaErrorInvalidNormSetting";
case cudaErrorMixedDeviceExecution:
return "cudaErrorMixedDeviceExecution";
case cudaErrorCudartUnloading:
return "cudaErrorCudartUnloading";
case cudaErrorUnknown:
return "cudaErrorUnknown";
case cudaErrorNotYetImplemented:
return "cudaErrorNotYetImplemented";
case cudaErrorMemoryValueTooLarge:
return "cudaErrorMemoryValueTooLarge";
case cudaErrorInvalidResourceHandle:
return "cudaErrorInvalidResourceHandle";
case cudaErrorNotReady:
return "cudaErrorNotReady";
case cudaErrorInsufficientDriver:
return "cudaErrorInsufficientDriver";
case cudaErrorSetOnActiveProcess:
return "cudaErrorSetOnActiveProcess";
case cudaErrorInvalidSurface:
return "cudaErrorInvalidSurface";
case cudaErrorNoDevice:
return "cudaErrorNoDevice";
case cudaErrorECCUncorrectable:
return "cudaErrorECCUncorrectable";
case cudaErrorSharedObjectSymbolNotFound:
return "cudaErrorSharedObjectSymbolNotFound";
case cudaErrorSharedObjectInitFailed:
return "cudaErrorSharedObjectInitFailed";
case cudaErrorUnsupportedLimit:
return "cudaErrorUnsupportedLimit";
case cudaErrorDuplicateVariableName:
return "cudaErrorDuplicateVariableName";
case cudaErrorDuplicateTextureName:
return "cudaErrorDuplicateTextureName";
case cudaErrorDuplicateSurfaceName:
return "cudaErrorDuplicateSurfaceName";
case cudaErrorDevicesUnavailable:
return "cudaErrorDevicesUnavailable";
case cudaErrorInvalidKernelImage:
return "cudaErrorInvalidKernelImage";
case cudaErrorNoKernelImageForDevice:
return "cudaErrorNoKernelImageForDevice";
case cudaErrorIncompatibleDriverContext:
return "cudaErrorIncompatibleDriverContext";
case cudaErrorPeerAccessAlreadyEnabled:
return "cudaErrorPeerAccessAlreadyEnabled";
case cudaErrorPeerAccessNotEnabled:
return "cudaErrorPeerAccessNotEnabled";
case cudaErrorDeviceAlreadyInUse:
return "cudaErrorDeviceAlreadyInUse";
case cudaErrorProfilerDisabled:
return "cudaErrorProfilerDisabled";
case cudaErrorProfilerNotInitialized:
return "cudaErrorProfilerNotInitialized";
case cudaErrorProfilerAlreadyStarted:
return "cudaErrorProfilerAlreadyStarted";
case cudaErrorProfilerAlreadyStopped:
return "cudaErrorProfilerAlreadyStopped";
/* Since CUDA 4.0*/
case cudaErrorAssert:
return "cudaErrorAssert";
case cudaErrorTooManyPeers:
return "cudaErrorTooManyPeers";
case cudaErrorHostMemoryAlreadyRegistered:
return "cudaErrorHostMemoryAlreadyRegistered";
case cudaErrorHostMemoryNotRegistered:
return "cudaErrorHostMemoryNotRegistered";
/* Since CUDA 5.0 */
case cudaErrorOperatingSystem:
return "cudaErrorOperatingSystem";
case cudaErrorPeerAccessUnsupported:
return "cudaErrorPeerAccessUnsupported";
case cudaErrorLaunchMaxDepthExceeded:
return "cudaErrorLaunchMaxDepthExceeded";
case cudaErrorLaunchFileScopedTex:
return "cudaErrorLaunchFileScopedTex";
case cudaErrorLaunchFileScopedSurf:
return "cudaErrorLaunchFileScopedSurf";
case cudaErrorSyncDepthExceeded:
return "cudaErrorSyncDepthExceeded";
case cudaErrorLaunchPendingCountExceeded:
return "cudaErrorLaunchPendingCountExceeded";
case cudaErrorNotPermitted:
return "cudaErrorNotPermitted";
case cudaErrorNotSupported:
return "cudaErrorNotSupported";
/* Since CUDA 6.0 */
case cudaErrorHardwareStackError:
return "cudaErrorHardwareStackError";
case cudaErrorIllegalInstruction:
return "cudaErrorIllegalInstruction";
case cudaErrorMisalignedAddress:
return "cudaErrorMisalignedAddress";
case cudaErrorInvalidAddressSpace:
return "cudaErrorInvalidAddressSpace";
case cudaErrorInvalidPc:
return "cudaErrorInvalidPc";
case cudaErrorIllegalAddress:
return "cudaErrorIllegalAddress";
/* Since CUDA 6.5*/
case cudaErrorInvalidPtx:
return "cudaErrorInvalidPtx";
case cudaErrorInvalidGraphicsContext:
return "cudaErrorInvalidGraphicsContext";
case cudaErrorStartupFailure:
return "cudaErrorStartupFailure";
case cudaErrorApiFailureBase:
return "cudaErrorApiFailureBase";
}
return "<unknown>";
}
#endif
template< typename T >
void check(T result, char const *const func, const char *const file, int const line)
{
if (result)
{
fprintf(stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n",
file, line, static_cast<unsigned int>(result), _cudaGetErrorEnum(result), func);
cudaDeviceReset();
// Make sure we call CUDA Device Reset before exiting
exit(EXIT_FAILURE);
}
}
int *pArgc = NULL;
char **pArgv = NULL;
#if CUDART_VERSION < 5000
// CUDA-C includes
#include <cuda.h>
// This function wraps the CUDA Driver API into a template function
template <class T>
inline void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device)
{
CUresult error = cuDeviceGetAttribute(attribute, device_attribute, device);
if (CUDA_SUCCESS != error) {
fprintf(stderr, "cuSafeCallNoSync() Driver API error = %04d from file <%s>, line %i.\n",
error, __FILE__, __LINE__);
// cudaDeviceReset causes the driver to clean up all state. While
// not mandatory in normal operation, it is good practice. It is also
// needed to ensure correct operation when the application is being
// profiled. Calling cudaDeviceReset causes all profile data to be
// flushed before the application exits
cudaDeviceReset();
exit(EXIT_FAILURE);
}
}
#endif /* CUDART_VERSION < 5000 */
// Beginning of GPU Architecture definitions
inline int ConvertSMVer2Cores(int major, int minor)
{
// Defines for GPU Architecture types (using the SM version to determine the # of cores per SM
typedef struct {
int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version
int Cores;
} sSMtoCores;
sSMtoCores nGpuArchCoresPerSM[] = {
{ 0x20, 32 }, // Fermi Generation (SM 2.0) GF100 class
{ 0x21, 48 }, // Fermi Generation (SM 2.1) GF10x class
{ 0x30, 192}, // Kepler Generation (SM 3.0) GK10x class
{ 0x32, 192}, // Kepler Generation (SM 3.2) GK10x class
{ 0x35, 192}, // Kepler Generation (SM 3.5) GK11x class
{ 0x37, 192}, // Kepler Generation (SM 3.7) GK21x class
{ 0x50, 128}, // Maxwell Generation (SM 5.0) GM10x class
{ 0x52, 128}, // Maxwell Generation (SM 5.2) GM20x class
{ -1, -1 }
};
int index = 0;
while (nGpuArchCoresPerSM[index].SM != -1) {
if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) {
return nGpuArchCoresPerSM[index].Cores;
}
index++;
}
// If we don't find the values, we default use the previous one to run properly
printf("MapSMtoCores for SM %d.%d is undefined. Default to use %d Cores/SM\n", major, minor, nGpuArchCoresPerSM[index-1].Cores);
return nGpuArchCoresPerSM[index-1].Cores;
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int
main(int argc, char **argv)
{
pArgc = &argc;
pArgv = argv;
printf("%s Starting...\n\n", argv[0]);
printf(" CUDA Device Query (Runtime API) version (CUDART static linking)\n\n");
int deviceCount = 0;
cudaError_t error_id = cudaGetDeviceCount(&deviceCount);
if (error_id != cudaSuccess) {
printf("cudaGetDeviceCount failed: %s (%d)\n",
cudaGetErrorString(error_id), (int) error_id);
printf("Result = FAIL\n");
exit(EXIT_FAILURE);
}
// This function call returns 0 if there are no CUDA capable devices.
if (deviceCount == 0)
printf("There are no available device(s) that support CUDA\n");
else
printf("Detected %d CUDA Capable device(s)\n", deviceCount);
int dev, driverVersion = 0, runtimeVersion = 0;
for (dev = 0; dev < deviceCount; ++dev) {
cudaSetDevice(dev);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
printf("\nDevice %d: \"%s\"\n", dev, deviceProp.name);
// Console log
cudaDriverGetVersion(&driverVersion);
cudaRuntimeGetVersion(&runtimeVersion);
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, (driverVersion%100)/10, runtimeVersion/1000, (runtimeVersion%100)/10);
printf(" CUDA Capability Major/Minor version number: %d.%d\n", deviceProp.major, deviceProp.minor);
printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n",
(float)deviceProp.totalGlobalMem/1048576.0f, (unsigned long long) deviceProp.totalGlobalMem);
printf(" (%2d) Multiprocessors, (%3d) CUDA Cores/MP: %d CUDA Cores\n",
deviceProp.multiProcessorCount,
ConvertSMVer2Cores(deviceProp.major, deviceProp.minor),
ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) * deviceProp.multiProcessorCount);
printf(" GPU Max Clock rate: %.0f MHz (%0.2f GHz)\n", deviceProp.clockRate * 1e-3f, deviceProp.clockRate * 1e-6f);
#if CUDART_VERSION >= 5000
// This is supported in CUDA 5.0 (runtime API device properties)
printf(" Memory Clock rate: %.0f Mhz\n", deviceProp.memoryClockRate * 1e-3f);
printf(" Memory Bus Width: %d-bit\n", deviceProp.memoryBusWidth);
if (deviceProp.l2CacheSize) {
printf(" L2 Cache Size: %d bytes\n", deviceProp.l2CacheSize);
}
#else
// This only available in CUDA 4.0-4.2 (but these were only exposed in the CUDA Driver API)
int memoryClock;
getCudaAttribute<int>(&memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev);
printf(" Memory Clock rate: %.0f Mhz\n", memoryClock * 1e-3f);
int memBusWidth;
getCudaAttribute<int>(&memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev);
printf(" Memory Bus Width: %d-bit\n", memBusWidth);
int L2CacheSize;
getCudaAttribute<int>(&L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev);
if (L2CacheSize) {
printf(" L2 Cache Size: %d bytes\n", L2CacheSize);
}
#endif
printf(" Maximum Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d, %d), 3D=(%d, %d, %d)\n",
deviceProp.maxTexture1D , deviceProp.maxTexture2D[0], deviceProp.maxTexture2D[1],
deviceProp.maxTexture3D[0], deviceProp.maxTexture3D[1], deviceProp.maxTexture3D[2]);
printf(" Maximum Layered 1D Texture Size, (num) layers 1D=(%d), %d layers\n",
deviceProp.maxTexture1DLayered[0], deviceProp.maxTexture1DLayered[1]);
printf(" Maximum Layered 2D Texture Size, (num) layers 2D=(%d, %d), %d layers\n",
deviceProp.maxTexture2DLayered[0], deviceProp.maxTexture2DLayered[1], deviceProp.maxTexture2DLayered[2]);
printf(" Total amount of constant memory: %lu bytes\n", deviceProp.totalConstMem);
printf(" Total amount of shared memory per block: %lu bytes\n", deviceProp.sharedMemPerBlock);
printf(" Total number of registers available per block: %d\n", deviceProp.regsPerBlock);
printf(" Warp size: %d\n", deviceProp.warpSize);
printf(" Maximum number of threads per multiprocessor: %d\n", deviceProp.maxThreadsPerMultiProcessor);
printf(" Maximum number of threads per block: %d\n", deviceProp.maxThreadsPerBlock);
printf(" Max dimension size of a thread block (x,y,z): (%d, %d, %d)\n",
deviceProp.maxThreadsDim[0],
deviceProp.maxThreadsDim[1],
deviceProp.maxThreadsDim[2]);
printf(" Max dimension size of a grid size (x,y,z): (%d, %d, %d)\n",
deviceProp.maxGridSize[0],
deviceProp.maxGridSize[1],
deviceProp.maxGridSize[2]);
printf(" Maximum memory pitch: %lu bytes\n", deviceProp.memPitch);
printf(" Texture alignment: %lu bytes\n", deviceProp.textureAlignment);
printf(" Concurrent copy and kernel execution: %s with %d copy engine(s)\n", (deviceProp.deviceOverlap ? "Yes" : "No"), deviceProp.asyncEngineCount);
printf(" Run time limit on kernels: %s\n", deviceProp.kernelExecTimeoutEnabled ? "Yes" : "No");
printf(" Integrated GPU sharing Host Memory: %s\n", deviceProp.integrated ? "Yes" : "No");
printf(" Support host page-locked memory mapping: %s\n", deviceProp.canMapHostMemory ? "Yes" : "No");
printf(" Alignment requirement for Surfaces: %s\n", deviceProp.surfaceAlignment ? "Yes" : "No");
printf(" Device has ECC support: %s\n", deviceProp.ECCEnabled ? "Enabled" : "Disabled");
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
printf(" CUDA Device Driver Mode (TCC or WDDM): %s\n", deviceProp.tccDriver ? "TCC (Tesla Compute Cluster Driver)" : "WDDM (Windows Display Driver Model)");
#endif
printf(" Device supports Unified Addressing (UVA): %s\n", deviceProp.unifiedAddressing ? "Yes" : "No");
printf(" Device PCI Domain ID / Bus ID / location ID: %d / %d / %d\n", deviceProp.pciDomainID, deviceProp.pciBusID, deviceProp.pciDeviceID);
const char *sComputeMode[] = {
"Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)",
"Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)",
"Prohibited (no host thread can use ::cudaSetDevice() with this device)",
"Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)",
"Unknown",
NULL
};
printf(" Compute Mode:\n");
printf(" < %s >\n", sComputeMode[deviceProp.computeMode]);
}
// If there are 2 or more GPUs, query to determine whether RDMA is supported
if (deviceCount >= 2)
{
cudaDeviceProp prop[64];
int gpuid[64]; // we want to find the first two GPU's that can support P2P
int gpu_p2p_count = 0;
for (int i=0; i < deviceCount; i++)
{
checkCudaErrors(cudaGetDeviceProperties(&prop[i], i));
// Only boards based on Fermi or later can support P2P
if ((prop[i].major >= 2)
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
// on Windows (64-bit), the Tesla Compute Cluster driver for windows must be enabled to supprot this
&& prop[i].tccDriver
#endif
)
{
// This is an array of P2P capable GPUs
gpuid[gpu_p2p_count++] = i;
}
}
// Show all the combinations of support P2P GPUs
int can_access_peer_0_1, can_access_peer_1_0;
if (gpu_p2p_count >= 2)
{
for (int i = 0; i < gpu_p2p_count-1; i++)
{
for (int j = 1; j < gpu_p2p_count; j++)
{
checkCudaErrors(cudaDeviceCanAccessPeer(&can_access_peer_0_1, gpuid[i], gpuid[j]));
printf("> Peer access from %s (GPU%d) -> %s (GPU%d) : %s\n", prop[gpuid[i]].name, gpuid[i],
prop[gpuid[j]].name, gpuid[j] ,
can_access_peer_0_1 ? "Yes" : "No");
}
}
for (int j = 1; j < gpu_p2p_count; j++)
{
for (int i = 0; i < gpu_p2p_count-1; i++)
{
checkCudaErrors(cudaDeviceCanAccessPeer(&can_access_peer_1_0, gpuid[j], gpuid[i]));
printf("> Peer access from %s (GPU%d) -> %s (GPU%d) : %s\n", prop[gpuid[j]].name, gpuid[j],
prop[gpuid[i]].name, gpuid[i] ,
can_access_peer_1_0 ? "Yes" : "No");
}
}
}
}
// csv masterlog info
// *****************************
// exe and CUDA driver name
printf("\n");
std::string sProfileString = "deviceQuery, CUDA Driver = CUDART";
char cTemp[128];
// driver version
sProfileString += ", CUDA Driver Version = ";
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(cTemp, 10, "%d.%d", driverVersion/1000, (driverVersion%100)/10);
#else
sprintf(cTemp, "%d.%d", driverVersion/1000, (driverVersion%100)/10);
#endif
sProfileString += cTemp;
// Runtime version
sProfileString += ", CUDA Runtime Version = ";
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(cTemp, 10, "%d.%d", runtimeVersion/1000, (runtimeVersion%100)/10);
#else
sprintf(cTemp, "%d.%d", runtimeVersion/1000, (runtimeVersion%100)/10);
#endif
sProfileString += cTemp;
// Device count
sProfileString += ", NumDevs = ";
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(cTemp, 10, "%d", deviceCount);
#else
sprintf(cTemp, "%d", deviceCount);
#endif
sProfileString += cTemp;
// Print Out all device Names
for (dev = 0; dev < deviceCount; ++dev)
{
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(cTemp, 13, ", Device%d = ", dev);
#else
sprintf(cTemp, ", Device%d = ", dev);
#endif
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
sProfileString += cTemp;
sProfileString += deviceProp.name;
}
sProfileString += "\n";
printf("%s", sProfileString.c_str());
printf("Result = PASS\n");
// finish
// cudaDeviceReset causes the driver to clean up all state. While
// not mandatory in normal operation, it is good practice. It is also
// needed to ensure correct operation when the application is being
// profiled. Calling cudaDeviceReset causes all profile data to be
// flushed before the application exits
cudaDeviceReset();
return 0;
}

43
pkgs/cudainfo/default.nix Normal file
View File

@ -0,0 +1,43 @@
{
stdenv
, cudatoolkit
, cudaPackages
, autoAddDriverRunpath
, strace
}:
stdenv.mkDerivation (finalAttrs: {
name = "cudainfo";
src = ./.;
buildInputs = [
cudatoolkit # Required for nvcc
cudaPackages.cuda_cudart.static # Required for -lcudart_static
autoAddDriverRunpath
];
installPhase = ''
mkdir -p $out/bin
cp -a cudainfo $out/bin
'';
passthru.gpuCheck = stdenv.mkDerivation {
name = "cudainfo-test";
requiredSystemFeatures = [ "cuda" ];
dontBuild = true;
nativeCheckInputs = [
finalAttrs.finalPackage # The cudainfo package from above
strace # When it fails, it will show the trace
];
dontUnpack = true;
doCheck = true;
checkPhase = ''
if ! cudainfo; then
set -x
cudainfo=$(command -v cudainfo)
ldd $cudainfo
readelf -d $cudainfo
strace -f $cudainfo
set +x
fi
'';
installPhase = "touch $out";
};
})

View File

@ -52,4 +52,5 @@ final: prev:
prometheus-slurm-exporter = prev.callPackage ./slurm-exporter.nix { };
meteocat-exporter = prev.callPackage ./meteocat-exporter/default.nix { };
upc-qaire-exporter = prev.callPackage ./upc-qaire-exporter/default.nix { };
cudainfo = prev.callPackage ./cudainfo/default.nix { };
}