From fd1229ddc009c9b331bcc82ef9e607acc17d3da9 Mon Sep 17 00:00:00 2001 From: Rodrigo Arias Mallo Date: Fri, 23 Oct 2020 10:53:39 +0200 Subject: [PATCH] nbody: add simple test figure --- garlic/fig/nbody/test.R | 111 ++++++++++++++++++++++++---------------- overlay.nix | 14 +++-- 2 files changed, 76 insertions(+), 49 deletions(-) diff --git a/garlic/fig/nbody/test.R b/garlic/fig/nbody/test.R index 0d0b619..21cb225 100644 --- a/garlic/fig/nbody/test.R +++ b/garlic/fig/nbody/test.R @@ -1,37 +1,53 @@ library(ggplot2) library(dplyr) library(scales) +library(jsonlite) -# Load the dataset -df=read.table("data.csv", col.names=c("blocksize", "time")) +args=commandArgs(trailingOnly=TRUE) -bs_unique = unique(df$blocksize) -nbs=length(bs_unique) +# Read the timetable from args[1] +input_file = "input.json" +if (length(args)>0) { input_file = args[1] } + +# Load the dataset in NDJSON format +dataset = jsonlite::stream_in(file(input_file)) %>% + jsonlite::flatten() + +particles = unique(dataset$config.particles) + +# We only need the nblocks and time +df = select(dataset, config.nblocks, config.hw.cpusPerSocket, time) %>% + rename(nblocks=config.nblocks, + cpusPerSocket=config.hw.cpusPerSocket) + +df = df %>% mutate(blocksPerCpu = nblocks / cpusPerSocket) +df$nblocks = as.factor(df$nblocks) +df$blocksPerCpuFactor = as.factor(df$blocksPerCpu) # Normalize the time by the median -D=group_by(df, blocksize) %>% - mutate(tnorm = time / median(time) - 1) # %>% -# mutate(bad = (abs(tnorm) >= 0.01)) %>% -# mutate(color = ifelse(bad,"red","black")) +D=group_by(df, nblocks) %>% + mutate(tnorm = time / median(time) - 1) -D$bad = cut(abs(D$tnorm), breaks=c(-Inf, 0.01, +Inf), labels=c("good", "bad")) +bs_unique = unique(df$nblocks) +nbs=length(bs_unique) print(D) -#ppi=300 -#h=5 -#w=5 -#png("box.png", width=w*ppi, height=h*ppi, res=ppi) +ppi=300 +h=5 +w=5 + +png("box.png", width=w*ppi, height=h*ppi, res=ppi) # # # -# Create the plot with the normalized time vs blocksize -p = ggplot(D, aes(x=blocksize, y=tnorm)) + +# Create the plot with the normalized time vs nblocks +p = ggplot(data=D, aes(x=blocksPerCpuFactor, y=tnorm)) + # Labels - labs(x="Block size", y="Normalized time", - title="Nbody normalized time", - subtitle="@expResult@") + + labs(x="Blocks/CPU", y="Normalized time", + title=sprintf("Nbody normalized time. Particles=%d", particles), + subtitle=input_file) + # Center the title #theme(plot.title = element_text(hjust = 0.5)) + @@ -39,44 +55,49 @@ p = ggplot(D, aes(x=blocksize, y=tnorm)) + # Black and white mode (useful for printing) #theme_bw() + - # Draw boxplots - geom_boxplot(aes(group=blocksize)) + + # Add the maximum allowed error lines + geom_hline(yintercept=c(-0.01, 0.01), + linetype="dashed", color="red") + - # Use log2 scale in x - scale_x_continuous(trans=log2_trans(), - breaks=bs_unique) + + # Draw boxplots + geom_boxplot() + scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) + - # Add the maximum allowed error lines - geom_hline(yintercept=c(-0.01, 0.01), - linetype="dashed", color="red") + theme_bw() + + + theme(plot.subtitle=element_text(size=8)) + + + theme(legend.position = c(0.85, 0.85)) #+ + + # Place each variant group in one separate plot + #facet_wrap(~jemalloc) # Render the plot print(p) -# -## Save the png image -#dev.off() -# -#png("scatter.png", width=w*ppi, height=h*ppi, res=ppi) -## Create the plot with the normalized time vs blocksize -#p = ggplot(D, aes(x=blocksize, y=time, color=bad)) + +## Save the png image +dev.off() # -# labs(x="Blocksize", y="Time (s)", -# title="Nbody granularity", -# subtitle="@expResult@") + +png("scatter.png", width=w*ppi, height=h*ppi, res=ppi) # -# geom_point(shape=21, size=1.5) + -# scale_color_manual(values=c("black", "red")) + -# scale_x_continuous(trans=log2_trans(), -# breaks=bs_unique) + -# scale_y_continuous(trans=log2_trans()) -# -## Render the plot -#print(p) +## Create the plot with the normalized time vs nblocks +p = ggplot(D, aes(x=blocksPerCpuFactor, y=time)) + + + labs(x="Blocks/CPU", y="Time (s)", + title=sprintf("Nbody granularity. Particles=%d", particles), + subtitle=input_file) + + theme_bw() + + theme(plot.subtitle=element_text(size=8)) + + theme(legend.position = c(0.5, 0.88)) + + + geom_point(shape=21, size=3) + + scale_y_continuous(trans=log2_trans()) + +# Render the plot +print(p) # Save the png image -#dev.off() +dev.off() diff --git a/overlay.nix b/overlay.nix index 75cd33f..43abed0 100644 --- a/overlay.nix +++ b/overlay.nix @@ -335,10 +335,11 @@ let }; # Datasets used in the figures - ds = with self.bsc.garlic; { - nbody = { - jemalloc = with exp.nbody; pp.merge [ baseline jemalloc ]; - freeCpu = with exp.nbody; pp.merge [ baseline freeCpu ]; + ds = with self.bsc.garlic; with pp; { + nbody = with exp.nbody; { + test = merge [ baseline ]; + jemalloc = merge [ baseline jemalloc ]; + freeCpu = merge [ baseline freeCpu ]; }; }; @@ -346,6 +347,11 @@ let fig = with self.bsc.garlic; { nbody = { + test = pp.rPlot { + script = ./garlic/fig/nbody/test.R; + dataset = ds.nbody.test; + }; + jemalloc = pp.rPlot { script = ./garlic/fig/nbody/jemalloc.R; dataset = ds.nbody.jemalloc;