diff --git a/garlic/fig/nbody/test.R b/garlic/fig/nbody/baseline.R similarity index 81% rename from garlic/fig/nbody/test.R rename to garlic/fig/nbody/baseline.R index 3db1610..38e6eec 100644 --- a/garlic/fig/nbody/test.R +++ b/garlic/fig/nbody/baseline.R @@ -22,6 +22,7 @@ df = select(dataset, config.nblocks, config.hw.cpusPerSocket, time) %>% df = df %>% mutate(blocksPerCpu = nblocks / cpusPerSocket) df$nblocks = as.factor(df$nblocks) +df$blocksPerCpuFactor = as.factor(df$blocksPerCpu) # Normalize the time by the median D=group_by(df, nblocks) %>% @@ -41,10 +42,10 @@ png("box.png", width=w*ppi, height=h*ppi, res=ppi) # # # Create the plot with the normalized time vs nblocks -p = ggplot(data=D, aes(x=nblocks, y=tnorm)) + +p = ggplot(data=D, aes(x=blocksPerCpuFactor, y=tnorm)) + # Labels - labs(x="Blocks", y="Normalized time", + labs(x="Num blocks", y="Normalized time", title=sprintf("Nbody normalized time. Particles=%d", particles), subtitle=input_file) + @@ -55,8 +56,8 @@ p = ggplot(data=D, aes(x=nblocks, y=tnorm)) + #theme_bw() + # Add the maximum allowed error lines - #geom_hline(yintercept=c(-0.01, 0.01), - # linetype="dashed", color="red") + + geom_hline(yintercept=c(-0.01, 0.01), + linetype="dashed", color="red") + # Draw boxplots geom_boxplot() + @@ -69,8 +70,6 @@ p = ggplot(data=D, aes(x=nblocks, y=tnorm)) + theme(legend.position = c(0.85, 0.85)) #+ - # Place each variant group in one separate plot - #facet_wrap(~jemalloc) @@ -83,17 +82,18 @@ dev.off() png("scatter.png", width=w*ppi, height=h*ppi, res=ppi) # ## Create the plot with the normalized time vs nblocks -p = ggplot(D, aes(x=nblocks, y=time)) + +p = ggplot(D, aes(x=blocksPerCpuFactor, y=time)) + - labs(x="Blocks", y="Time (s)", + labs(x="Blocks/CPU", y="Time (s)", title=sprintf("Nbody granularity. Particles=%d", particles), subtitle=input_file) + theme_bw() + theme(plot.subtitle=element_text(size=8)) + theme(legend.position = c(0.5, 0.88)) + - geom_point(shape=21, size=3) # + - #scale_y_continuous(trans=log2_trans()) + geom_point(shape=21, size=3) + + #scale_x_continuous(trans=log2_trans()) + + scale_y_continuous(trans=log2_trans()) # Render the plot print(p)