saiph: simplify and update figure scripts

This commit is contained in:
Rodrigo Arias 2021-04-01 19:20:06 +02:00
parent 10b1ff8f7a
commit 8a97fefafa
5 changed files with 205 additions and 313 deletions

View File

@ -42,8 +42,8 @@ in
}; };
saiph = with exp.saiph; { saiph = with exp.saiph; {
granularity-saiph = stdPlot ./saiph/granularity-saiph.R [ granularity-saiph ]; granularity = stdPlot ./saiph/granularity.R [ granularity ];
scalability-saiph = stdPlot ./saiph/scalability-saiph.R [ scalability-saiph ]; ss = stdPlot ./saiph/ss.R [ ss ];
}; };
heat = with exp.heat; { heat = with exp.heat; {

View File

@ -1,155 +0,0 @@
library(ggplot2)
library(dplyr)
library(scales)
library(jsonlite)
library(viridis)
args=commandArgs(trailingOnly=TRUE)
# Read the timetable from args[1]
input_file = "input.json"
if (length(args)>0) { input_file = args[1] }
# Load the dataset in NDJSON format
dataset = jsonlite::stream_in(file(input_file)) %>%
jsonlite::flatten()
# Create a data frame selecting the desired variables from the data set
df = select(dataset, config.nbly, config.nblz, config.nodes, time, total_time) %>%
rename(nbly=config.nbly, nblz=config.nblz, nnodes=config.nodes)
# Declare variables as factors
# --> R does not allow to operate with factors: operate before casting to factors
df$nblPerProc = as.factor(round((df$nbly * df$nblz) / 24, digits = 2))
df$biggernbly = as.factor(df$nbly > df$nblz)
df$nbly = as.factor(df$nbly)
df$nblz = as.factor(df$nblz)
df$nodes = as.factor(df$nnodes)
# Create a new data frame including statistics
D=group_by(df, nbly, nblz, nblPerProc, nodes) %>%
mutate(tmedian = median(time)) %>%
mutate(ttmedian = median(total_time)) %>%
mutate(tnorm = time / tmedian - 1) %>%
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) %>%
mutate(tn = tmedian * nnodes) %>%
ungroup()
D$bad = as.factor(D$bad)
### Std output data frame D
print(D)
### Output figure size
ppi=300
h=5
w=8
####################################################################
### Boxplot
####################################################################
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
#
#
# Create the plot with the normalized time vs nblocks
p = ggplot(data=D, aes(x=nblPerProc, y=tnorm, color=bad)) +
# Labels
labs(x="nblPerProc", y="Normalized time",
title=sprintf("Saiph-Heat3D normalized time"),
subtitle=input_file) +
# Add the maximum allowed error lines
geom_hline(yintercept=c(-0.01, 0.01),
linetype="dashed", color="gray") +
# Draw boxplots
geom_boxplot() +
scale_color_manual(values=c("black", "brown")) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = "none")
# Render the plot
print(p)
## Save the png image
dev.off()
####################################################################
### XY Scatter plot - measured_time & total_time vs tasks per cpu
####################################################################
####################################################################
### XY Scatter plot - time vs tasks per cpu
####################################################################
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
## Create the plot with the normalized time vs nblocks per proc
p = ggplot(D, aes(x=nblPerProc, y=time)) +
labs(x="nblPerProc", y="Time (s)",
title=sprintf("Saiph-Heat3D granularity"),
subtitle=input_file) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = c(0.5, 0.88)) +
geom_point(shape=21, size=3) +
scale_y_continuous(trans=log2_trans())
# Render the plot
print(p)
## Save the png image
dev.off()
####################################################################
### XY Scatter plot - median time vs tasks per cpu
####################################################################
png("scatter2.png", width=w*ppi, height=h*ppi, res=ppi)
## Create the plot with the normalized time vs nblocks per proc
p = ggplot(D, aes(x=nblPerProc, y=tmedian)) +
labs(x="nblPerProc", y="Median Time (s)",
title=sprintf("Saiph-Heat3D granularity"),
subtitle=input_file) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = c(0.5, 0.88)) +
geom_point(aes(color=biggernbly), shape=21, size=3) +
labs(color = "nbly > nblz")
scale_y_continuous(trans=log2_trans())
# Render the plot
print(p)
# Save the png image
dev.off()
####################################################################
### Heatmap plot - median time vs tasks per cpu per dimension
####################################################################
heatmap_plot = function(df, colname, title) {
p = ggplot(df, aes(x=nbly, y=nblz, fill=!!ensym(colname))) +
geom_raster() +
#scale_fill_gradient(high="black", low="white") +
scale_fill_viridis(option="plasma") +
coord_fixed() +
theme_bw() +
theme(axis.text.x=element_text(angle = -45, hjust = 0)) +
theme(plot.subtitle=element_text(size=8)) +
guides(fill = guide_colorbar(barwidth=12, title.vjust=0.8)) +
labs(x="nbly", y="nblz",
title=sprintf("Heat granularity: %s", title),
subtitle=input_file) +
theme(legend.position="bottom")+
facet_wrap( ~ nodes)
k=1
ggsave(sprintf("%s.png", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
ggsave(sprintf("%s.pdf", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
}
# call heatmap function with colname and legend title
heatmap_plot(D, "tmedian", "time")

View File

@ -0,0 +1,94 @@
library(ggplot2)
library(dplyr, warn.conflicts = FALSE)
library(scales)
library(jsonlite)
library(viridis, warn.conflicts = FALSE)
library(stringr)
args = commandArgs(trailingOnly=TRUE)
# Set the input dataset if given in argv[1], or use "input" as default
if (length(args)>0) { input_file = args[1] } else { input_file = "input" }
df = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
jsonlite::flatten() %>%
select(unit,
config.nodes,
config.nblx,
config.nbly,
config.nblz,
config.gitBranch,
config.blocksPerCpu,
config.sizex,
time,
total_time) %>%
rename(nodes=config.nodes,
nblx=config.nblx,
nbly=config.nbly,
nblz=config.nblz,
gitBranch=config.gitBranch,
blocksPerCpu=config.blocksPerCpu,
sizex=config.sizex) %>%
# Remove the "garlic/" prefix from the gitBranch
mutate(branch = str_replace(gitBranch, "garlic/", "")) %>%
# Computations before converting to factor
mutate(time.nodes = time * nodes) %>%
# Convert to factors
mutate(unit = as.factor(unit)) %>%
mutate(nodes = as.factor(nodes)) %>%
mutate(gitBranch = as.factor(gitBranch)) %>%
mutate(nblx = as.factor(nblx)) %>%
mutate(nbly = as.factor(nbly)) %>%
mutate(nblz = as.factor(nblz)) %>%
mutate(sizex = as.factor(sizex)) %>%
mutate(unit = as.factor(unit)) %>%
# Compute median times
group_by(unit) %>%
mutate(median.time = median(time)) %>%
mutate(median.time.nodes = median(time.nodes)) %>%
mutate(normalized.time = time / median.time - 1) %>%
mutate(log.median.time = log(median.time)) %>%
ungroup()
dpi = 300
h = 5
w = 8
maintitle = "Saiph-Heat3D granularity"
# ---------------------------------------------------------------------
p = ggplot(df, aes(x=nbly, y=normalized.time, fill=sizex)) +
geom_boxplot() +
geom_hline(yintercept=c(-0.01, 0.01), linetype="dashed", color="red") +
theme_bw() +
facet_wrap(branch ~ .) +
labs(y="Normalized time",
title=sprintf("%s: normalized time", maintitle),
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
ggsave("normalized.time.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("normalized.time.pdf", plot=p, width=w, height=h, dpi=dpi)
# ---------------------------------------------------------------------
p = ggplot(df, aes(x=blocksPerCpu, y=time, color=sizex)) +
geom_point(shape=21, size=3) +
geom_line(aes(y=median.time, group=sizex)) +
theme_bw() +
scale_x_continuous(trans=log2_trans()) +
labs(y="Time (s)",
title=sprintf("%s: time", maintitle),
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
ggsave("time.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("time.pdf", plot=p, width=w, height=h, dpi=dpi)

View File

@ -1,156 +0,0 @@
library(ggplot2)
library(dplyr)
library(scales)
library(jsonlite)
library(viridis)
args=commandArgs(trailingOnly=TRUE)
# Read the timetable from args[1]
input_file = "input.json"
if (length(args)>0) { input_file = args[1] }
# Load the dataset in NDJSON format
dataset = jsonlite::stream_in(file(input_file)) %>%
jsonlite::flatten()
# Create a data frame selecting the desired variables from the data set
df = select(dataset, config.nbly, config.nblz, config.nodes, time, total_time) %>%
rename(nbly=config.nbly, nblz=config.nblz, nnodes=config.nodes)
# Declare variables as factors
# --> R does not allow to operate with factors: operate before casting to factors
df$nblPerProc = as.factor(round((df$nbly * df$nblz) / 24, digits = 2))
df$biggernbly = as.factor(df$nbly > df$nblz)
df$nbly = as.factor(df$nbly)
df$nblz = as.factor(df$nblz)
df$nodes = as.factor(df$nnodes)
# Create a new data frame including statistics
D=group_by(df, nbly, nblz, nblPerProc, nodes) %>%
mutate(tmedian = median(time)) %>%
mutate(ttmedian = median(total_time)) %>%
mutate(tnorm = time / tmedian - 1) %>%
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) %>%
mutate(tn = tmedian * nnodes) %>%
ungroup()
D$bad = as.factor(D$bad)
### Std output data frame D
print(D)
### Output figure size
ppi=300
h=5
w=8
####################################################################
### Boxplot
####################################################################
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
#
#
# Create the plot with the normalized time vs nblocks
p = ggplot(data=D, aes(x=nblPerProc, y=tnorm, color=bad)) +
# Labels
labs(x="nblPerProc", y="Normalized time",
title=sprintf("Saiph-Heat3D normalized time"),
subtitle=input_file) +
# Add the maximum allowed error lines
geom_hline(yintercept=c(-0.01, 0.01),
linetype="dashed", color="gray") +
# Draw boxplots
geom_boxplot() +
scale_color_manual(values=c("black", "brown")) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = "none")
# Render the plot
print(p)
## Save the png image
dev.off()
####################################################################
### XY Scatter plot - measured_time & total_time vs tasks per cpu
####################################################################
####################################################################
### XY Scatter plot - time vs tasks per cpu
####################################################################
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
## Create the plot with the normalized time vs nblocks per proc
p = ggplot(D, aes(x=nblPerProc, y=time)) +
labs(x="nblPerProc", y="Time (s)",
title=sprintf("Saiph-Heat3D granularity"),
subtitle=input_file) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = c(0.5, 0.88)) +
geom_point(aes(color=nodes), shape=21, size=3) +
scale_y_continuous(trans=log2_trans())
# Render the plot
print(p)
## Save the png image
dev.off()
####################################################################
### XY Scatter plot - median time vs tasks per cpu
####################################################################
png("scatter2.png", width=w*ppi, height=h*ppi, res=ppi)
## Create the plot with the normalized time vs nblocks per proc
p = ggplot(D, aes(x=nblPerProc, y=tn)) +
labs(x="nblPerProc", y="Median Time (s) * nodes",
title=sprintf("Saiph-Heat3D granularity"),
subtitle=input_file) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = c(0.5, 0.88)) +
geom_point(aes(color=nodes), shape=21, size=3) +
labs(color = "nbly > nblz")
scale_y_continuous(trans=log2_trans())
# Render the plot
print(p)
# Save the png image
dev.off()
####################################################################
### Heatmap plot - median time vs tasks per cpu per dimension
####################################################################
heatmap_plot = function(df, colname, title) {
p = ggplot(df, aes(x=nbly, y=nblz, fill=!!ensym(colname))) +
geom_raster() +
#scale_fill_gradient(high="black", low="white") +
scale_fill_viridis(option="plasma") +
coord_fixed() +
theme_bw() +
theme(axis.text.x=element_text(angle = -45, hjust = 0)) +
theme(plot.subtitle=element_text(size=8)) +
guides(fill = guide_colorbar(barwidth=12, title.vjust=0.8)) +
labs(x="nbly", y="nblz",
title=sprintf("Heat granularity: %s", title),
subtitle=input_file) +
theme(legend.position="bottom")+
facet_wrap( ~ nodes)
k=1
ggsave(sprintf("%s.png", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
ggsave(sprintf("%s.pdf", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
}
# call heatmap function with colname and legend title
heatmap_plot(D, "tmedian", "time")

109
garlic/fig/saiph/ss.R Normal file
View File

@ -0,0 +1,109 @@
library(ggplot2)
library(dplyr, warn.conflicts = FALSE)
library(scales)
library(jsonlite)
library(viridis, warn.conflicts = FALSE)
library(stringr)
args = commandArgs(trailingOnly=TRUE)
# Set the input dataset if given in argv[1], or use "input" as default
if (length(args)>0) { input_file = args[1] } else { input_file = "input" }
df = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
jsonlite::flatten() %>%
select(unit,
config.nodes,
config.nblx,
config.nbly,
config.nblz,
config.gitBranch,
config.blocksPerCpu,
config.sizex,
time,
total_time) %>%
rename(nodes=config.nodes,
nblx=config.nblx,
nbly=config.nbly,
nblz=config.nblz,
gitBranch=config.gitBranch,
blocksPerCpu=config.blocksPerCpu,
sizex=config.sizex) %>%
# Remove the "garlic/" prefix from the gitBranch
mutate(branch = str_replace(gitBranch, "garlic/", "")) %>%
# Computations before converting to factor
mutate(time.nodes = time * nodes) %>%
# Convert to factors
mutate(unit = as.factor(unit)) %>%
mutate(nodes = as.factor(nodes)) %>%
mutate(gitBranch = as.factor(gitBranch)) %>%
mutate(nblx = as.factor(nblx)) %>%
mutate(nbly = as.factor(nbly)) %>%
mutate(nblz = as.factor(nblz)) %>%
mutate(sizex = as.factor(sizex)) %>%
mutate(unit = as.factor(unit)) %>%
# Compute median times
group_by(unit) %>%
mutate(median.time = median(time)) %>%
mutate(median.time.nodes = median(time.nodes)) %>%
mutate(normalized.time = time / median.time - 1) %>%
mutate(log.median.time = log(median.time)) %>%
ungroup()
dpi = 300
h = 5
w = 8
maintitle = "Saiph-Heat3D strong scaling"
# ---------------------------------------------------------------------
p = ggplot(df, aes(x=nodes, y=normalized.time, fill=sizex)) +
geom_boxplot() +
geom_hline(yintercept=c(-0.01, 0.01), linetype="dashed", color="red") +
theme_bw() +
facet_wrap(branch ~ .) +
labs(x="nodes", y="Normalized time",
title=sprintf("%s: normalized time", maintitle),
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
ggsave("normalized.time.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("normalized.time.pdf", plot=p, width=w, height=h, dpi=dpi)
# ---------------------------------------------------------------------
p = ggplot(df, aes(x=nodes, y=time, color=sizex)) +
geom_point(shape=21, size=3) +
geom_line(aes(y=median.time, group=sizex)) +
theme_bw() +
# facet_wrap(branch ~ .) +
labs(x="nodes", y="Time (s)",
title=sprintf("%s: time", maintitle),
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
ggsave("time.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("time.pdf", plot=p, width=w, height=h, dpi=dpi)
# ---------------------------------------------------------------------
p = ggplot(df, aes(x=nodes, y=time.nodes, color=sizex)) +
geom_point(shape=21, size=3) +
geom_line(aes(y=median.time.nodes, group=sizex)) +
theme_bw() +
#facet_wrap(branch ~ .) +
labs(x="nodes", y="Time * nodes (s)",
title=sprintf("%s: time * nodes", maintitle),
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
ggsave("time.nodes.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("time.nodes.pdf", plot=p, width=w, height=h, dpi=dpi)