heat: update granularity plot with modern ggplot

This commit is contained in:
Rodrigo Arias 2021-04-06 18:40:19 +02:00
parent d1c32869c1
commit 63aa07dad5

View File

@ -1,120 +1,67 @@
library(ggplot2) library(ggplot2)
library(dplyr) library(dplyr, warn.conflicts = FALSE)
library(scales) library(scales)
library(jsonlite) library(jsonlite)
library(viridis, warn.conflicts = FALSE)
library(stringr)
args=commandArgs(trailingOnly=TRUE) args = commandArgs(trailingOnly=TRUE)
# Read the timetable from args[1] # Set the input dataset if given in argv[1], or use "input" as default
input_file = "input.json" if (length(args)>0) { input_file = args[1] } else { input_file = "input" }
if (length(args)>0) { input_file = args[1] }
# Load the dataset in NDJSON format df = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
dataset = jsonlite::stream_in(file(input_file)) %>%
jsonlite::flatten()
jsonlite::flatten() %>%
# We only need the nblocks and time select(unit,
df = select(dataset, config.cbs, config.rbs, time) %>% config.cbs,
rename(cbs=config.cbs, rbs=config.rbs) config.rbs,
time,
total_time) %>%
df$cbs = as.factor(df$cbs) rename(cbs=config.cbs,
df$rbs = as.factor(df$rbs) rbs=config.rbs) %>%
# Normalize the time by the median # Convert to factors
df=group_by(df, cbs, rbs) %>% mutate(cbs = as.factor(cbs)) %>%
mutate(mtime = median(time)) %>% mutate(rbs = as.factor(rbs)) %>%
mutate(tnorm = time / mtime - 1) %>% mutate(unit = as.factor(unit)) %>%
mutate(logmtime = log(mtime)) %>%
ungroup() %>%
filter(between(mtime, mean(time) - (1 * sd(time)),
mean(time) + (1 * sd(time))))
ppi=300 # Compute median times
h=5 group_by(unit) %>%
w=5 mutate(median.time = median(time)) %>%
mutate(normalized.time = time / median.time - 1) %>%
mutate(log.median.time = log(median.time)) %>%
ungroup()
png("box.png", width=w*ppi, height=h*ppi, res=ppi) dpi = 300
# h = 6
# w = 6
#
# Create the plot with the normalized time vs nblocks
p = ggplot(data=df, aes(x=cbs, y=tnorm)) +
# Labels # ---------------------------------------------------------------------
labs(x="cbs", y="Normalized time",
title=sprintf("Heat normalized time"),
subtitle=input_file) +
# Center the title p = ggplot(df, aes(x=cbs, y=normalized.time)) +
#theme(plot.title = element_text(hjust = 0.5)) + geom_boxplot() +
geom_hline(yintercept=c(-0.01, 0.01), linetype="dashed", color="red") +
theme_bw() +
labs(y="Normalized time",
title="Heat granularity: normalized time",
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
# Black and white mode (useful for printing) ggsave("normalized.time.png", plot=p, width=w, height=h, dpi=dpi)
#theme_bw() + ggsave("normalized.time.pdf", plot=p, width=w, height=h, dpi=dpi)
# Add the maximum allowed error lines # ---------------------------------------------------------------------
geom_hline(yintercept=c(-0.01, 0.01),
linetype="dashed", color="red") +
# Draw boxplots p = ggplot(df, aes(x=cbs, y=time)) +
geom_boxplot() + geom_point(shape=21, size=3) +
geom_line(aes(y=median.time, group=0)) +
theme_bw() +
labs(y="Time (s)", title="Heat granularity: time",
subtitle=input_file) +
theme(plot.subtitle=element_text(size=8))
#scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) + ggsave("time.png", plot=p, width=w, height=h, dpi=dpi)
ggsave("time.pdf", plot=p, width=w, height=h, dpi=dpi)
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = c(0.85, 0.85)) #+
# Render the plot
print(p)
## Save the png image
dev.off()
#
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
#
## Create the plot with the normalized time vs nblocks
p = ggplot(df, aes(x=cbs, y=time, linetype=rbs, group=rbs)) +
labs(x="cbs", y="Time (s)",
title=sprintf("Heat granularity"),
subtitle=input_file) +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
theme(legend.position = c(0.5, 0.88)) +
geom_point(shape=21, size=3) +
geom_line(aes(y=mtime)) +
#scale_x_continuous(trans=log2_trans()) +
scale_y_continuous(trans=log2_trans())
# Render the plot
print(p)
# Save the png image
dev.off()
png("heatmap.png", width=w*ppi, height=h*ppi, res=ppi)
#
## Create the plot with the normalized time vs nblocks
p = ggplot(df, aes(x=cbs, y=rbs, fill=logmtime)) +
geom_raster() +
scale_fill_gradient(high="black", low="white") +
coord_fixed() +
theme_bw() +
theme(plot.subtitle=element_text(size=8)) +
labs(x="cbs", y="rbs",
title=sprintf("Heat granularity"),
subtitle=input_file)
# Render the plot
print(p)
# Save the png image
dev.off()