osu: use ggsave and reduce verbosity

This commit is contained in:
Rodrigo Arias 2021-03-03 12:37:46 +01:00
parent 6973f48638
commit 14211c9895
2 changed files with 53 additions and 25 deletions

View File

@ -1,5 +1,5 @@
library(ggplot2) library(ggplot2)
library(dplyr) library(dplyr, warn.conflicts = FALSE)
library(scales) library(scales)
library(jsonlite) library(jsonlite)
@ -10,7 +10,7 @@ input_file = "input.json"
if (length(args)>0) { input_file = args[1] } if (length(args)>0) { input_file = args[1] }
# Load the dataset in NDJSON format # Load the dataset in NDJSON format
dataset = jsonlite::stream_in(file(input_file)) %>% dataset = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
jsonlite::flatten() jsonlite::flatten()
# We only need the nblocks and time # We only need the nblocks and time
@ -23,11 +23,9 @@ cpusPerTask = unique(df$config.cpusPerTask)
df$unitName = as.factor(df$unitName) df$unitName = as.factor(df$unitName)
df$sizeFactor = as.factor(df$size) df$sizeFactor = as.factor(df$size)
ppi=300 df = group_by(df, unitName, sizeFactor) %>%
h=8 mutate(medianBw = median(bw)) %>%
w=12 ungroup()
png("bw.png", width=w*ppi, height=h*ppi, res=ppi)
breaks = 10^(-10:10) breaks = 10^(-10:10)
minor_breaks <- rep(1:9, 21)*(10^rep(-10:10, each=9)) minor_breaks <- rep(1:9, 21)*(10^rep(-10:10, each=9))
@ -39,12 +37,29 @@ p = ggplot(data=df, aes(x=size, y=bw)) +
subtitle=input_file) + subtitle=input_file) +
geom_boxplot(aes(color=unitName, group=interaction(unitName, sizeFactor))) + geom_boxplot(aes(color=unitName, group=interaction(unitName, sizeFactor))) +
scale_x_continuous(trans=log2_trans()) + scale_x_continuous(trans=log2_trans()) +
scale_y_log10(breaks = breaks, minor_breaks = minor_breaks) + #scale_y_log10(breaks = breaks, minor_breaks = minor_breaks) +
theme_bw() + theme_bw() +
theme(legend.position = c(0.15, 0.9)) theme(legend.position = c(0.8, 0.2))
# Render the plot ppi=300
print(p) h=4
w=8
ggsave("boxplot.pdf", plot=p, width=w, height=h, dpi=ppi)
ggsave("boxplot.png", plot=p, width=w, height=h, dpi=ppi)
## Save the png image p = ggplot(data=df, aes(x=size, y=medianBw)) +
dev.off() labs(x="Size (bytes)", y="Bandwidth (MB/s)",
title=sprintf("OSU benchmark: osu_bw",
nodes, tasksPerNode, cpusPerTask),
subtitle=input_file) +
geom_line(aes(color=unitName, linetype=unitName)) +
geom_point(aes(color=unitName, shape=unitName)) +
geom_hline(yintercept = 100e3 / 8, color="red") +
annotate("text", x = 8, y = (100e3 / 8) * 0.95, label = "12.5GB/s (100Gb/s)") +
scale_x_continuous(trans=log2_trans()) +
#scale_y_log10(breaks = breaks, minor_breaks = minor_breaks) +
theme_bw() +
theme(legend.position = c(0.8, 0.2))
ggsave("median-lines.png", plot=p, width=w, height=h, dpi=ppi)
ggsave("median-lines.pdf", plot=p, width=w, height=h, dpi=ppi)

View File

@ -1,5 +1,5 @@
library(ggplot2) library(ggplot2)
library(dplyr) library(dplyr, warn.conflicts = FALSE)
library(scales) library(scales)
library(jsonlite) library(jsonlite)
@ -10,7 +10,7 @@ input_file = "input.json"
if (length(args)>0) { input_file = args[1] } if (length(args)>0) { input_file = args[1] }
# Load the dataset in NDJSON format # Load the dataset in NDJSON format
dataset = jsonlite::stream_in(file(input_file)) %>% dataset = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
jsonlite::flatten() jsonlite::flatten()
# We only need the nblocks and time # We only need the nblocks and time
@ -23,11 +23,9 @@ cpusPerTask = unique(df$config.cpusPerTask)
df$unitName = as.factor(df$unitName) df$unitName = as.factor(df$unitName)
df$sizeFactor = as.factor(df$size) df$sizeFactor = as.factor(df$size)
ppi=300 df = group_by(df, unitName, sizeFactor) %>%
h=8 mutate(medianLatency = median(latency)) %>%
w=12 ungroup()
png("latency.png", width=w*ppi, height=h*ppi, res=ppi)
breaks = 10^(-10:10) breaks = 10^(-10:10)
minor_breaks <- rep(1:9, 21)*(10^rep(-10:10, each=9)) minor_breaks <- rep(1:9, 21)*(10^rep(-10:10, each=9))
@ -41,10 +39,25 @@ p = ggplot(data=df, aes(x=size, y=latency)) +
scale_x_continuous(trans=log2_trans()) + scale_x_continuous(trans=log2_trans()) +
scale_y_log10(breaks = breaks, minor_breaks = minor_breaks) + scale_y_log10(breaks = breaks, minor_breaks = minor_breaks) +
theme_bw() + theme_bw() +
theme(legend.position = c(0.15, 0.9)) theme(legend.position = c(0.8, 0.2))
# Render the plot ppi=300
print(p) h=4
w=8
ggsave("boxplot.png", plot=p, width=w, height=h, dpi=ppi)
ggsave("boxplot.pdf", plot=p, width=w, height=h, dpi=ppi)
## Save the png image p = ggplot(data=df, aes(x=size, y=medianLatency)) +
dev.off() labs(x="Size (bytes)", y="Latency (us)",
title=sprintf("OSU benchmark: osu_latency",
nodes, tasksPerNode, cpusPerTask),
subtitle=input_file) +
geom_line(aes(color=unitName, linetype=unitName)) +
geom_point(aes(color=unitName, shape=unitName)) +
scale_x_continuous(trans=log2_trans()) +
scale_y_log10(breaks = breaks, minor_breaks = minor_breaks) +
theme_bw() +
theme(legend.position = c(0.2, 0.8))
ggsave("median-lines.png", plot=p, width=w, height=h, dpi=ppi)
ggsave("median-lines.pdf", plot=p, width=w, height=h, dpi=ppi)