2021-03-12 12:14:51 +01:00
|
|
|
library(ggplot2)
|
|
|
|
library(dplyr)
|
|
|
|
library(scales)
|
|
|
|
library(jsonlite)
|
|
|
|
library(viridis)
|
2021-03-18 20:08:24 +01:00
|
|
|
library(tidyr)
|
2021-03-12 12:14:51 +01:00
|
|
|
|
|
|
|
args=commandArgs(trailingOnly=TRUE)
|
|
|
|
|
|
|
|
# Read the timetable from args[1]
|
|
|
|
input_file = "input.json"
|
|
|
|
if (length(args)>0) { input_file = args[1] }
|
|
|
|
|
|
|
|
# Load the dataset in NDJSON format
|
|
|
|
dataset = jsonlite::stream_in(file(input_file)) %>%
|
|
|
|
jsonlite::flatten()
|
|
|
|
|
|
|
|
# We only need the nblocks and time
|
|
|
|
df = select(dataset, config.cbs, config.rbs,
|
|
|
|
ctf_mode.runtime,
|
|
|
|
ctf_mode.task,
|
|
|
|
ctf_mode.dead,
|
2021-03-18 20:08:24 +01:00
|
|
|
config.cpusPerTask,
|
2021-03-12 12:14:51 +01:00
|
|
|
time) %>%
|
|
|
|
rename(
|
|
|
|
cbs=config.cbs,
|
|
|
|
rbs=config.rbs,
|
|
|
|
runtime=ctf_mode.runtime,
|
|
|
|
task=ctf_mode.task,
|
|
|
|
dead=ctf_mode.dead,
|
2021-03-18 20:08:24 +01:00
|
|
|
cpusPerTask=config.cpusPerTask,
|
2021-03-12 12:14:51 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
df$cbs = as.factor(df$cbs)
|
|
|
|
df$rbs = as.factor(df$rbs)
|
|
|
|
|
|
|
|
# Normalize the time by the median
|
|
|
|
df = df %>%
|
2021-03-18 20:08:24 +01:00
|
|
|
mutate(runtime = runtime * 1e-9 / cpusPerTask) %>%
|
|
|
|
mutate(dead = dead * 1e-9 / cpusPerTask) %>%
|
|
|
|
mutate(task = task * 1e-9 / cpusPerTask) %>%
|
2021-03-12 12:14:51 +01:00
|
|
|
group_by(cbs, rbs) %>%
|
|
|
|
mutate(median.time = median(time)) %>%
|
|
|
|
mutate(log.median.time = log(median.time)) %>%
|
|
|
|
mutate(median.dead = median(dead)) %>%
|
|
|
|
mutate(median.runtime = median(runtime)) %>%
|
|
|
|
mutate(median.task = median(task)) %>%
|
2021-03-18 20:08:24 +01:00
|
|
|
ungroup() #%>%
|
2021-03-12 12:14:51 +01:00
|
|
|
|
|
|
|
print(df)
|
|
|
|
|
|
|
|
heatmap_plot = function(df, colname, title) {
|
|
|
|
p = ggplot(df, aes(x=cbs, y=rbs, fill=!!ensym(colname))) +
|
|
|
|
geom_raster() +
|
|
|
|
#scale_fill_gradient(high="black", low="white") +
|
|
|
|
scale_fill_viridis(option="plasma") +
|
|
|
|
coord_fixed() +
|
|
|
|
theme_bw() +
|
|
|
|
theme(axis.text.x=element_text(angle = -45, hjust = 0)) +
|
|
|
|
theme(plot.subtitle=element_text(size=8)) +
|
|
|
|
#guides(fill = guide_colorbar(barwidth=15, title.position="top")) +
|
|
|
|
guides(fill = guide_colorbar(barwidth=12, title.vjust=0.8)) +
|
|
|
|
labs(x="cbs", y="rbs",
|
|
|
|
title=sprintf("Heat granularity: %s", title),
|
|
|
|
subtitle=input_file) +
|
|
|
|
theme(legend.position="bottom")
|
|
|
|
|
|
|
|
k=1
|
|
|
|
ggsave(sprintf("%s.png", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
|
|
|
|
ggsave(sprintf("%s.pdf", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
|
|
|
|
}
|
|
|
|
|
|
|
|
heatmap_plot(df, "median.runtime", "runtime")
|
|
|
|
heatmap_plot(df, "median.dead", "not used")
|
|
|
|
heatmap_plot(df, "median.task", "task")
|
|
|
|
|
|
|
|
cutlevel = 0.5
|
|
|
|
# To plot the median.time we crop the larger values:
|
|
|
|
df_filtered = filter(df, between(median.time,
|
|
|
|
median(time) - (cutlevel * sd(time)),
|
|
|
|
median(time) + (cutlevel * sd(time))))
|
|
|
|
|
|
|
|
heatmap_plot(df, "median.time", "execution time (seconds)")
|
|
|
|
heatmap_plot(df, "log.median.time", "execution time")
|
2021-03-18 20:08:24 +01:00
|
|
|
|
|
|
|
df_square = filter(df, cbs == rbs) %>%
|
|
|
|
gather(key = time.from, value = acc.time,
|
|
|
|
c("median.dead", "median.runtime", "median.task"))
|
|
|
|
|
|
|
|
# Colors similar to Paraver
|
|
|
|
colors <- c("median.dead" = "gray",
|
|
|
|
"median.runtime" = "blue",
|
|
|
|
"median.task" = "red")
|
|
|
|
|
|
|
|
p = ggplot(df_square, aes(x=cbs, y=acc.time)) +
|
|
|
|
geom_area(aes(fill=time.from, group=time.from)) +
|
|
|
|
scale_fill_manual(values = colors) +
|
|
|
|
geom_point(aes(y=median.time, color="black")) +
|
|
|
|
geom_line(aes(y=median.time, group=0, color="black")) +
|
|
|
|
theme_bw() +
|
|
|
|
theme(legend.position=c(0.5, 0.7)) +
|
|
|
|
scale_color_identity(breaks = c("black"),
|
|
|
|
labels = c("Total time"), guide = "legend") +
|
|
|
|
labs(x="Blocksize (side)", y="Time (s)",
|
|
|
|
fill="Estimated", color="Direct measurement",
|
|
|
|
title="Heat granularity: time distribution", subtitle=input_file)
|
|
|
|
|
|
|
|
ggsave("area.time.png", plot=p, width=6, height=6, dpi=300)
|
|
|
|
ggsave("area.time.pdf", plot=p, width=6, height=6, dpi=300)
|
|
|
|
|
|
|
|
p = ggplot(df_square, aes(x=cbs, y=acc.time)) +
|
|
|
|
geom_col(aes(fill=time.from, group=time.from)) +
|
|
|
|
scale_fill_manual(values = colors) +
|
|
|
|
theme_bw() +
|
|
|
|
theme(legend.position=c(0.5, 0.7)) +
|
|
|
|
labs(x="Blocksize (side)", y="Time (s)",
|
|
|
|
fill="Estimated", color="Direct measurement",
|
|
|
|
title="Heat granularity: time distribution", subtitle=input_file)
|
|
|
|
|
|
|
|
ggsave("col.time.png", plot=p, width=6, height=6, dpi=300)
|
|
|
|
ggsave("col.time.pdf", plot=p, width=6, height=6, dpi=300)
|