156 lines
5.0 KiB
R
156 lines
5.0 KiB
R
|
library(ggplot2)
|
||
|
library(dplyr)
|
||
|
library(scales)
|
||
|
library(jsonlite)
|
||
|
library(viridis)
|
||
|
|
||
|
args=commandArgs(trailingOnly=TRUE)
|
||
|
|
||
|
# Read the timetable from args[1]
|
||
|
input_file = "input.json"
|
||
|
if (length(args)>0) { input_file = args[1] }
|
||
|
|
||
|
# Load the dataset in NDJSON format
|
||
|
dataset = jsonlite::stream_in(file(input_file)) %>%
|
||
|
jsonlite::flatten()
|
||
|
|
||
|
|
||
|
# Create a data frame selecting the desired variables from the data set
|
||
|
df = select(dataset, config.nbly, config.nblz, config.nodes, time, total_time) %>%
|
||
|
rename(nbly=config.nbly, nblz=config.nblz, nnodes=config.nodes)
|
||
|
|
||
|
# Declare variables as factors
|
||
|
# --> R does not allow to operate with factors: operate before casting to factors
|
||
|
df$nblPerProc = as.factor(round((df$nbly * df$nblz) / 24, digits = 2))
|
||
|
df$biggernbly = as.factor(df$nbly > df$nblz)
|
||
|
df$nbly = as.factor(df$nbly)
|
||
|
df$nblz = as.factor(df$nblz)
|
||
|
df$nodes = as.factor(df$nnodes)
|
||
|
|
||
|
# Create a new data frame including statistics
|
||
|
D=group_by(df, nbly, nblz, nblPerProc, nodes) %>%
|
||
|
mutate(tmedian = median(time)) %>%
|
||
|
mutate(ttmedian = median(total_time)) %>%
|
||
|
mutate(tnorm = time / tmedian - 1) %>%
|
||
|
mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) %>%
|
||
|
mutate(tn = tmedian * nnodes) %>%
|
||
|
ungroup()
|
||
|
|
||
|
D$bad = as.factor(D$bad)
|
||
|
|
||
|
### Std output data frame D
|
||
|
print(D)
|
||
|
|
||
|
### Output figure size
|
||
|
ppi=300
|
||
|
h=5
|
||
|
w=8
|
||
|
|
||
|
####################################################################
|
||
|
### Boxplot
|
||
|
####################################################################
|
||
|
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
|
||
|
#
|
||
|
#
|
||
|
# Create the plot with the normalized time vs nblocks
|
||
|
p = ggplot(data=D, aes(x=nblPerProc, y=tnorm, color=bad)) +
|
||
|
|
||
|
# Labels
|
||
|
labs(x="nblPerProc", y="Normalized time",
|
||
|
title=sprintf("Saiph-Heat3D normalized time"),
|
||
|
subtitle=input_file) +
|
||
|
# Add the maximum allowed error lines
|
||
|
geom_hline(yintercept=c(-0.01, 0.01),
|
||
|
linetype="dashed", color="gray") +
|
||
|
|
||
|
# Draw boxplots
|
||
|
geom_boxplot() +
|
||
|
scale_color_manual(values=c("black", "brown")) +
|
||
|
theme_bw() +
|
||
|
theme(plot.subtitle=element_text(size=8)) +
|
||
|
theme(legend.position = "none")
|
||
|
|
||
|
|
||
|
# Render the plot
|
||
|
print(p)
|
||
|
|
||
|
## Save the png image
|
||
|
dev.off()
|
||
|
|
||
|
####################################################################
|
||
|
### XY Scatter plot - measured_time & total_time vs tasks per cpu
|
||
|
####################################################################
|
||
|
|
||
|
|
||
|
####################################################################
|
||
|
### XY Scatter plot - time vs tasks per cpu
|
||
|
####################################################################
|
||
|
png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
|
||
|
## Create the plot with the normalized time vs nblocks per proc
|
||
|
p = ggplot(D, aes(x=nblPerProc, y=time)) +
|
||
|
labs(x="nblPerProc", y="Time (s)",
|
||
|
title=sprintf("Saiph-Heat3D granularity"),
|
||
|
subtitle=input_file) +
|
||
|
theme_bw() +
|
||
|
theme(plot.subtitle=element_text(size=8)) +
|
||
|
theme(legend.position = c(0.5, 0.88)) +
|
||
|
geom_point(shape=21, size=3) +
|
||
|
scale_y_continuous(trans=log2_trans())
|
||
|
|
||
|
|
||
|
# Render the plot
|
||
|
print(p)
|
||
|
|
||
|
## Save the png image
|
||
|
dev.off()
|
||
|
|
||
|
####################################################################
|
||
|
### XY Scatter plot - median time vs tasks per cpu
|
||
|
####################################################################
|
||
|
png("scatter2.png", width=w*ppi, height=h*ppi, res=ppi)
|
||
|
## Create the plot with the normalized time vs nblocks per proc
|
||
|
p = ggplot(D, aes(x=nblPerProc, y=tmedian)) +
|
||
|
labs(x="nblPerProc", y="Median Time (s)",
|
||
|
title=sprintf("Saiph-Heat3D granularity"),
|
||
|
subtitle=input_file) +
|
||
|
theme_bw() +
|
||
|
theme(plot.subtitle=element_text(size=8)) +
|
||
|
theme(legend.position = c(0.5, 0.88)) +
|
||
|
geom_point(aes(color=biggernbly), shape=21, size=3) +
|
||
|
labs(color = "nbly > nblz")
|
||
|
scale_y_continuous(trans=log2_trans())
|
||
|
|
||
|
# Render the plot
|
||
|
print(p)
|
||
|
|
||
|
# Save the png image
|
||
|
dev.off()
|
||
|
|
||
|
####################################################################
|
||
|
### Heatmap plot - median time vs tasks per cpu per dimension
|
||
|
####################################################################
|
||
|
heatmap_plot = function(df, colname, title) {
|
||
|
p = ggplot(df, aes(x=nbly, y=nblz, fill=!!ensym(colname))) +
|
||
|
geom_raster() +
|
||
|
#scale_fill_gradient(high="black", low="white") +
|
||
|
scale_fill_viridis(option="plasma") +
|
||
|
coord_fixed() +
|
||
|
theme_bw() +
|
||
|
theme(axis.text.x=element_text(angle = -45, hjust = 0)) +
|
||
|
theme(plot.subtitle=element_text(size=8)) +
|
||
|
guides(fill = guide_colorbar(barwidth=12, title.vjust=0.8)) +
|
||
|
labs(x="nbly", y="nblz",
|
||
|
title=sprintf("Heat granularity: %s", title),
|
||
|
subtitle=input_file) +
|
||
|
theme(legend.position="bottom")+
|
||
|
facet_wrap( ~ nodes)
|
||
|
|
||
|
k=1
|
||
|
ggsave(sprintf("%s.png", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
|
||
|
ggsave(sprintf("%s.pdf", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
|
||
|
}
|
||
|
|
||
|
# call heatmap function with colname and legend title
|
||
|
heatmap_plot(D, "tmedian", "time")
|
||
|
|