108 lines
3.2 KiB
R
108 lines
3.2 KiB
R
|
library(ggplot2)
|
||
|
library(dplyr)
|
||
|
library(scales)
|
||
|
library(jsonlite)
|
||
|
|
||
|
args=commandArgs(trailingOnly=TRUE)
|
||
|
|
||
|
# Read the timetable from args[1]
|
||
|
input_file = "input.json"
|
||
|
if (length(args)>0) { input_file = args[1] }
|
||
|
|
||
|
# Load the dataset in NDJSON format
|
||
|
dataset = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
|
||
|
jsonlite::flatten()
|
||
|
|
||
|
# We only need some colums
|
||
|
df = select(dataset, unit, config.nodes, config.gitBranch, time) %>%
|
||
|
rename(nodes=config.nodes, gitBranch=config.gitBranch)
|
||
|
|
||
|
df$unit = as.factor(df$unit)
|
||
|
df$nnodes = df$nodes
|
||
|
df$nodes = as.factor(df$nodes)
|
||
|
df$gitBranch = as.factor(df$gitBranch)
|
||
|
|
||
|
# Remove the "garlic/" prefix from the gitBranch
|
||
|
levels(df$gitBranch) <- substring((levels(df$gitBranch)), 8)
|
||
|
|
||
|
# Compute new columns
|
||
|
D=group_by(df, unit) %>%
|
||
|
mutate(tnorm = time / median(time) - 1) %>%
|
||
|
mutate(bad = ifelse(max(abs(tnorm)) >= 0.01, 1, 0)) %>%
|
||
|
mutate(variability = ifelse(bad > 0, "large", "ok")) %>%
|
||
|
mutate(mtime = median(time)) %>%
|
||
|
mutate(nmtime = mtime*nnodes) %>%
|
||
|
mutate(ntime = time*nnodes) %>%
|
||
|
ungroup() %>%
|
||
|
mutate(min_nmtime = min(nmtime)) %>%
|
||
|
mutate(rnmtime = nmtime / min_nmtime) %>%
|
||
|
mutate(rntime = ntime / min_nmtime) %>%
|
||
|
mutate(rmeff = 1.0 / rnmtime) %>%
|
||
|
mutate(reff = 1.0 / rntime) %>%
|
||
|
group_by(gitBranch) %>%
|
||
|
mutate(tmax = max(mtime)) %>%
|
||
|
mutate(speedup=tmax/time) %>%
|
||
|
mutate(eff=speedup/nnodes) %>%
|
||
|
mutate(mspeedup=tmax/mtime) %>%
|
||
|
mutate(meff=mspeedup/nnodes) %>%
|
||
|
ungroup()
|
||
|
|
||
|
D$bad = as.factor(D$bad > 0)
|
||
|
D$variability = as.factor(D$variability)
|
||
|
|
||
|
ppi=300
|
||
|
h=5
|
||
|
w=5
|
||
|
|
||
|
png("variability.png", width=1.5*w*ppi, height=h*ppi, res=ppi)
|
||
|
p = ggplot(data=D, aes(x=nodes, y=tnorm, color=variability)) +
|
||
|
theme_bw() +
|
||
|
theme(plot.subtitle=element_text(size=8)) +
|
||
|
# Add the maximum allowed error lines
|
||
|
geom_hline(yintercept=c(-0.01, 0.01),
|
||
|
linetype="dashed", color="gray") +
|
||
|
# Draw boxplots
|
||
|
geom_boxplot(aes(fill=gitBranch)) +
|
||
|
scale_color_manual(values=c("brown", "black")) +
|
||
|
# Labels
|
||
|
labs(x="Nodes", y="Normalized time", title="Creams strong scaling",
|
||
|
subtitle=input_file)
|
||
|
print(p)
|
||
|
dev.off()
|
||
|
|
||
|
png("time.png", width=w*1.5*ppi, height=h*ppi, res=ppi)
|
||
|
p = ggplot(D, aes(x=nodes, y=mtime, color=gitBranch)) +
|
||
|
theme_bw() +
|
||
|
theme(plot.subtitle=element_text(size=8)) +
|
||
|
geom_line(aes(group=gitBranch)) +
|
||
|
#geom_point() +
|
||
|
geom_point(aes(shape=variability), size=3) +
|
||
|
scale_shape_manual(values=c(21, 19)) +
|
||
|
# position=position_dodge(width=0.3)) +
|
||
|
#scale_x_continuous(trans=log2_trans()) +
|
||
|
scale_y_continuous(trans=log2_trans()) +
|
||
|
labs(x="Nodes", y="Time (s)",
|
||
|
title="Creams strong scaling (lower is better)",
|
||
|
subtitle=input_file)
|
||
|
print(p)
|
||
|
dev.off()
|
||
|
|
||
|
png("refficiency.png", width=w*1.5*ppi, height=h*ppi, res=ppi)
|
||
|
p = ggplot(D, aes(x=nodes, y=rmeff, color=gitBranch)) +
|
||
|
theme_bw() +
|
||
|
theme(plot.subtitle=element_text(size=8)) +
|
||
|
geom_line(aes(group=gitBranch)) +
|
||
|
geom_point(aes(shape=variability), size=3) +
|
||
|
#geom_boxplot(aes(y=reff),
|
||
|
# position=position_dodge(width=0.0)) +
|
||
|
scale_shape_manual(values=c(21, 19)) +
|
||
|
#geom_point(aes(y=rntime),
|
||
|
# position=position_dodge(width=0.3)) +
|
||
|
#scale_x_continuous(trans=log2_trans()) +
|
||
|
#scale_y_continuous(trans=log2_trans()) +
|
||
|
labs(x="Nodes", y="Relative efficiency (to best)",
|
||
|
title="Creams strong scaling (higher is better)",
|
||
|
subtitle=input_file)
|
||
|
print(p)
|
||
|
dev.off()
|