2021-04-07 12:59:05 +02:00
|
|
|
library(ggplot2)
|
|
|
|
library(dplyr, warn.conflicts = FALSE)
|
|
|
|
library(scales)
|
|
|
|
library(jsonlite)
|
|
|
|
|
|
|
|
args=commandArgs(trailingOnly=TRUE)
|
|
|
|
|
|
|
|
# Read the timetable from args[1]
|
|
|
|
input_file = "input.json"
|
|
|
|
if (length(args)>0) { input_file = args[1] }
|
2021-04-21 13:40:25 +02:00
|
|
|
if (length(args)>1) { output = args[2] } else { output = "?" }
|
2021-04-07 12:59:05 +02:00
|
|
|
|
|
|
|
# Load the dataset in NDJSON format
|
|
|
|
dataset = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
|
|
|
|
jsonlite::flatten()
|
|
|
|
|
|
|
|
# We only need the nblocks and time
|
|
|
|
df = select(dataset,
|
|
|
|
config.unitName,
|
|
|
|
config.nodes,
|
|
|
|
config.ntasksPerNode,
|
|
|
|
config.cpusPerTask,
|
|
|
|
config.PSM2_MQ_EAGER_SDMA_SZ,
|
|
|
|
config.PSM2_MTU,
|
|
|
|
size, bw, config.iterations) %>%
|
|
|
|
rename(unitName=config.unitName,
|
|
|
|
iterations=config.iterations,
|
2021-04-09 16:02:28 +02:00
|
|
|
PSM2_MQ_EAGER_SDMA_SZ.val=config.PSM2_MQ_EAGER_SDMA_SZ,
|
|
|
|
PSM2_MTU.val=config.PSM2_MTU) %>%
|
|
|
|
mutate(bw = bw / 1000.0)
|
2021-04-07 12:59:05 +02:00
|
|
|
|
|
|
|
nodes = unique(df$config.nodes)
|
|
|
|
tasksPerNode = unique(df$config.ntasksPerNode)
|
|
|
|
cpusPerTask = unique(df$config.cpusPerTask)
|
|
|
|
df$unitName = as.factor(df$unitName)
|
|
|
|
df$sizeFactor = as.factor(df$size)
|
|
|
|
df$sizeKB = df$size / 1024
|
2021-04-09 16:02:28 +02:00
|
|
|
df$PSM2_MQ_EAGER_SDMA_SZ = as.factor(df$PSM2_MQ_EAGER_SDMA_SZ.val)
|
|
|
|
df$PSM2_MTU = as.factor(df$PSM2_MTU.val)
|
2021-04-07 12:59:05 +02:00
|
|
|
|
|
|
|
iterations = unique(df$iterations)
|
|
|
|
|
|
|
|
df = group_by(df, unitName, sizeFactor) %>%
|
2021-04-09 16:02:28 +02:00
|
|
|
mutate(median.bw = median(bw)) %>%
|
2021-04-07 12:59:05 +02:00
|
|
|
ungroup()
|
|
|
|
|
|
|
|
breaks = 10^(-10:10)
|
|
|
|
minor_breaks <- rep(1:9, 21)*(10^rep(-10:10, each=9))
|
|
|
|
|
2021-04-09 16:02:28 +02:00
|
|
|
ppi=300
|
|
|
|
h=3
|
|
|
|
w=6
|
2021-04-07 12:59:05 +02:00
|
|
|
|
|
|
|
p = ggplot(data=df, aes(x=sizeKB, y=bw)) +
|
2021-04-09 16:02:28 +02:00
|
|
|
geom_vline(aes(xintercept = PSM2_MQ_EAGER_SDMA_SZ.val/1024), color="blue") +
|
|
|
|
geom_vline(aes(xintercept = PSM2_MTU.val/1024), color="red") +
|
|
|
|
labs(x="Message size (KiB)", y="Bandwidth (GB/s)",
|
|
|
|
#title=sprintf("OSU benchmark: osu_bw --iterations %d", iterations),
|
2021-04-21 13:40:25 +02:00
|
|
|
subtitle=gsub("-", "\uad", output)) +
|
2021-04-09 16:02:28 +02:00
|
|
|
geom_point(shape=21, size=2) +
|
2021-04-07 12:59:05 +02:00
|
|
|
#annotate("text", x = 10.2, y = 8.5e3, label = "MTU = 10KB", color="red", hjust=0) +
|
2021-04-09 16:02:28 +02:00
|
|
|
facet_wrap(vars(PSM2_MTU), nrow=3, labeller = "label_both") +
|
|
|
|
#scale_x_continuous(breaks = unique(df$sizeKB), minor_breaks=NULL) +
|
|
|
|
scale_x_continuous(n.breaks = 12) +
|
|
|
|
theme_bw() +
|
|
|
|
theme(plot.subtitle = element_text(size=8, family="mono"))
|
2021-04-07 12:59:05 +02:00
|
|
|
|
|
|
|
ggsave("bw.png", plot=p, width=w, height=h, dpi=ppi)
|
|
|
|
ggsave("bw.pdf", plot=p, width=w, height=h, dpi=ppi)
|