2021-03-01 12:19:10 +01:00
|
|
|
library(ggplot2)
|
2021-03-03 12:37:46 +01:00
|
|
|
library(dplyr, warn.conflicts = FALSE)
|
2021-03-01 12:19:10 +01:00
|
|
|
library(scales)
|
|
|
|
library(jsonlite)
|
2021-04-09 16:02:28 +02:00
|
|
|
library(stringr)
|
|
|
|
#library(extrafont)
|
|
|
|
#library(Cairo)
|
2021-03-01 12:19:10 +01:00
|
|
|
|
|
|
|
args=commandArgs(trailingOnly=TRUE)
|
|
|
|
|
|
|
|
# Read the timetable from args[1]
|
|
|
|
input_file = "input.json"
|
|
|
|
if (length(args)>0) { input_file = args[1] }
|
|
|
|
|
|
|
|
# Load the dataset in NDJSON format
|
2021-03-03 12:37:46 +01:00
|
|
|
dataset = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
|
2021-03-01 12:19:10 +01:00
|
|
|
jsonlite::flatten()
|
|
|
|
|
|
|
|
# We only need the nblocks and time
|
|
|
|
df = select(dataset, config.unitName, config.nodes, config.ntasksPerNode, config.cpusPerTask, size, bw) %>%
|
2021-04-09 16:02:28 +02:00
|
|
|
rename(unitName=config.unitName) %>%
|
|
|
|
mutate(bw=bw / 1024.0) %>%
|
|
|
|
mutate(unitName=str_replace(unitName, "osu-bw-", ""))
|
2021-03-01 12:19:10 +01:00
|
|
|
|
|
|
|
nodes = unique(df$config.nodes)
|
|
|
|
tasksPerNode = unique(df$config.ntasksPerNode)
|
|
|
|
cpusPerTask = unique(df$config.cpusPerTask)
|
|
|
|
df$unitName = as.factor(df$unitName)
|
|
|
|
df$sizeFactor = as.factor(df$size)
|
|
|
|
|
2021-03-03 12:37:46 +01:00
|
|
|
df = group_by(df, unitName, sizeFactor) %>%
|
2021-04-09 16:02:28 +02:00
|
|
|
mutate(median.bw = median(bw)) %>%
|
2021-03-03 12:37:46 +01:00
|
|
|
ungroup()
|
2021-03-01 12:19:10 +01:00
|
|
|
|
2021-04-09 16:02:28 +02:00
|
|
|
ppi=300
|
|
|
|
h=3
|
|
|
|
w=6
|
2021-03-01 12:19:10 +01:00
|
|
|
|
2021-04-09 16:02:28 +02:00
|
|
|
p = ggplot(data=df, aes(x=size, y=median.bw)) +
|
|
|
|
labs(x="Message size", y="Bandwidth (GB/s)",
|
|
|
|
#title=sprintf("OSU benchmark: osu_bw", nodes, tasksPerNode, cpusPerTask),
|
|
|
|
subtitle=gsub("-", "\uad", input_file)) +
|
|
|
|
geom_line(aes(linetype=unitName)) +
|
|
|
|
geom_point(aes(shape=unitName), size=1.5) +
|
|
|
|
scale_shape_discrete(name = "MPI version") +
|
|
|
|
scale_linetype_discrete(name = "MPI version") +
|
|
|
|
#scale_color_discrete(name = "MPI version") +
|
|
|
|
geom_hline(yintercept=12.5, color="red") +
|
|
|
|
annotate("text", x=1, y=12.5 * .95,
|
|
|
|
label="Max: 12.5GB/s (100Gbps)",
|
|
|
|
hjust=0, vjust=1, size=3) +
|
|
|
|
#scale_x_continuous(trans=log2_trans()) +
|
|
|
|
scale_x_continuous(trans=log2_trans(),
|
|
|
|
labels=label_bytes("auto_binary"),
|
|
|
|
n.breaks = 12,
|
|
|
|
#breaks=unique(df$size),
|
|
|
|
#minor_breaks=NULL
|
|
|
|
) +
|
2021-03-03 12:37:46 +01:00
|
|
|
#scale_y_log10(breaks = breaks, minor_breaks = minor_breaks) +
|
2021-03-01 12:19:10 +01:00
|
|
|
theme_bw() +
|
2021-04-09 16:02:28 +02:00
|
|
|
theme(plot.subtitle = element_text(size=8, family="mono")) +
|
|
|
|
theme(legend.justification = c(1,0), legend.position = c(0.99, 0.01)) +
|
|
|
|
theme(axis.text.x = element_text(angle=-45, hjust=0))
|
2021-03-01 12:19:10 +01:00
|
|
|
|
2021-04-09 16:02:28 +02:00
|
|
|
ggsave("median-lines.png", plot=p, width=w, height=h, dpi=ppi)
|
|
|
|
ggsave("median-lines.pdf", plot=p, width=w, height=h, dpi=ppi)
|
|
|
|
#ggsave("median-lines-cairo.pdf", plot=p, width=w, height=h, dpi=ppi, device=cairo_pdf)
|
|
|
|
#CairoPDF(file="median-lines-Cairo.pdf", width=w, height=h)
|
|
|
|
#print(p)
|
|
|
|
#dev.off()
|
2021-03-03 12:37:46 +01:00
|
|
|
|
2021-04-09 16:02:28 +02:00
|
|
|
|
|
|
|
p = ggplot(data=df, aes(x=size, y=bw)) +
|
|
|
|
labs(x="Message size", y="Bandwidth (MB/s)",
|
|
|
|
#title=sprintf("OSU benchmark: osu_bw", nodes, tasksPerNode, cpusPerTask),
|
|
|
|
subtitle=input_file) +
|
|
|
|
geom_line(aes(y=median.bw, linetype=unitName, group=unitName)) +
|
|
|
|
geom_point(aes(shape=unitName), size=2) +
|
|
|
|
scale_shape(solid = FALSE) +
|
2021-03-03 12:37:46 +01:00
|
|
|
geom_hline(yintercept = 100e3 / 8, color="red") +
|
2021-04-09 16:02:28 +02:00
|
|
|
annotate("text", x = 8, y = (100e3 / 8) * 0.95,
|
|
|
|
label = "Max: 12.5GB/s (100Gbps)") +
|
|
|
|
#scale_x_continuous(trans=log2_trans()) +
|
|
|
|
scale_x_continuous(trans=log2_trans(),
|
|
|
|
labels=label_bytes("auto_binary"),
|
|
|
|
breaks=unique(df$size),
|
|
|
|
minor_breaks=NULL) +
|
2021-03-03 12:37:46 +01:00
|
|
|
#scale_y_log10(breaks = breaks, minor_breaks = minor_breaks) +
|
|
|
|
theme_bw() +
|
2021-04-09 16:02:28 +02:00
|
|
|
theme(plot.subtitle = element_text(size=4)) +
|
|
|
|
theme(legend.position = c(0.2, 0.6)) +
|
|
|
|
theme(axis.text.x = element_text(angle=-45, hjust=0))
|
2021-03-01 12:19:10 +01:00
|
|
|
|
2021-04-09 16:02:28 +02:00
|
|
|
ggsave("bw.png", plot=p, width=w, height=h, dpi=ppi)
|
|
|
|
ggsave("bw.pdf", plot=p, width=w, height=h, dpi=ppi)
|
|
|
|
|
|
|
|
warnings()
|