bscpkgs/garlic/fig/nbody/jemalloc/plot.R

93 lines
1.9 KiB
R
Raw Normal View History

library(ggplot2)
library(dplyr)
library(scales)
# Load the dataset
df=read.table("/nix/store/vvfcimwp8mkv6kc5fs3rbyjy8grgpmmb-plot/data.csv",
col.names=c("variant", "blocksize", "time"))
# Use the blocksize as factor
df$blocksize = as.factor(df$blocksize)
# Split by malloc variant
D=df %>% group_by(variant, blocksize) %>%
mutate(tnorm = time / median(time) - 1)
bs_unique = unique(df$blocksize)
nbs=length(bs_unique)
print(D)
ppi=300
h=5
w=5
png("box.png", width=w*ppi, height=h*ppi, res=ppi)
#
#
#
# Create the plot with the normalized time vs blocksize
p = ggplot(data=D, aes(x=blocksize, y=tnorm)) +
# Labels
labs(x="Block size", y="Normalized time",
title="Nbody normalized time",
subtitle="@expResult@") +
# Center the title
#theme(plot.title = element_text(hjust = 0.5)) +
# Black and white mode (useful for printing)
#theme_bw() +
# Add the maximum allowed error lines
geom_hline(yintercept=c(-0.01, 0.01),
linetype="dashed", color="red") +
# Draw boxplots
geom_boxplot(aes(fill=variant)) +
# # Use log2 scale in x
# scale_x_continuous(trans=log2_trans(),
# breaks=bs_unique) +
#
scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
theme_bw() +
theme(legend.position = c(0.85, 0.85)) #+
# Place each variant group in one separate plot
#facet_wrap(~variant)
# Render the plot
print(p)
## Save the png image
dev.off()
#
#png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
#
## Create the plot with the normalized time vs blocksize
#p = ggplot(D, aes(x=blocksize, y=time, color=variant)) +
#
# labs(x="Block size", y="Time (s)",
# title="Nbody granularity",
# subtitle="@expResult@") +
# theme_bw() +
#
# geom_point(shape=21, size=3) +
# scale_x_continuous(trans=log2_trans()) +
# scale_y_continuous(trans=log2_trans())
#
## Render the plot
#print(p)
#
## Save the png image
#dev.off()