forked from rarias/bscpkgs
		
	The input dataset is not enough to determine which script produced a given plot.
		
			
				
	
	
		
			123 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
			
		
		
	
	
			123 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
| library(ggplot2)
 | |
| library(dplyr)
 | |
| library(scales)
 | |
| library(jsonlite)
 | |
| library(viridis)
 | |
| library(tidyr)
 | |
| 
 | |
| args=commandArgs(trailingOnly=TRUE)
 | |
| 
 | |
| # Read the timetable from args[1]
 | |
| input_file = "input.json"
 | |
| if (length(args)>0) { input_file = args[1] }
 | |
| if (length(args)>1) { output = args[2] } else { output = "?" }
 | |
| 
 | |
| # Load the dataset in NDJSON format
 | |
| dataset = jsonlite::stream_in(file(input_file)) %>%
 | |
| 	jsonlite::flatten()
 | |
| 
 | |
| # We only need the nblocks and time
 | |
| df = select(dataset, config.cbs, config.rbs,
 | |
|     ctf_mode.runtime,
 | |
|     ctf_mode.task,
 | |
|     ctf_mode.dead,
 | |
|     config.cpusPerTask,
 | |
|     time) %>%
 | |
| 	rename(
 | |
|     cbs=config.cbs,
 | |
|     rbs=config.rbs,
 | |
|     runtime=ctf_mode.runtime,
 | |
|     task=ctf_mode.task,
 | |
|     dead=ctf_mode.dead,
 | |
|     cpusPerTask=config.cpusPerTask,
 | |
|   )
 | |
| 
 | |
| df$cbs = as.factor(df$cbs)
 | |
| df$rbs = as.factor(df$rbs)
 | |
| 
 | |
| # Normalize the time by the median
 | |
| df = df %>%
 | |
| 	mutate(runtime = runtime * 1e-9 / cpusPerTask) %>%
 | |
| 	mutate(dead = dead * 1e-9 / cpusPerTask) %>%
 | |
| 	mutate(task = task * 1e-9 / cpusPerTask) %>%
 | |
|   group_by(cbs, rbs) %>%
 | |
| 	mutate(median.time = median(time)) %>%
 | |
| 	mutate(log.median.time = log(median.time)) %>%
 | |
| 	mutate(median.dead = median(dead)) %>%
 | |
| 	mutate(median.runtime = median(runtime)) %>%
 | |
| 	mutate(median.task = median(task)) %>%
 | |
|   ungroup() #%>%
 | |
| 
 | |
| print(df)
 | |
| 
 | |
| heatmap_plot = function(df, colname, title) {
 | |
|   p = ggplot(df, aes(x=cbs, y=rbs, fill=!!ensym(colname))) +
 | |
|     geom_raster() +
 | |
|     #scale_fill_gradient(high="black", low="white") +
 | |
|     scale_fill_viridis(option="plasma") +
 | |
|     coord_fixed() +
 | |
|     theme_bw() +
 | |
|     theme(axis.text.x=element_text(angle = -45, hjust = 0)) +
 | |
|     theme(plot.subtitle=element_text(size=8)) +
 | |
|     #guides(fill = guide_colorbar(barwidth=15, title.position="top")) +
 | |
|     guides(fill = guide_colorbar(barwidth=12, title.vjust=0.8)) +
 | |
|     labs(x="cbs", y="rbs",
 | |
|       title=sprintf("Heat granularity: %s", title), 
 | |
|       subtitle=output) +
 | |
|     theme(legend.position="bottom")
 | |
| 
 | |
|   k=1
 | |
|   ggsave(sprintf("%s.png", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
 | |
|   ggsave(sprintf("%s.pdf", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
 | |
| }
 | |
| 
 | |
| heatmap_plot(df, "median.runtime", "runtime")
 | |
| heatmap_plot(df, "median.dead", "not used")
 | |
| heatmap_plot(df, "median.task", "task")
 | |
| 
 | |
| cutlevel = 0.5
 | |
| # To plot the median.time we crop the larger values:
 | |
| df_filtered = filter(df, between(median.time,
 | |
|   median(time) - (cutlevel * sd(time)),
 | |
|   median(time) + (cutlevel * sd(time))))
 | |
| 
 | |
| heatmap_plot(df, "median.time", "execution time (seconds)")
 | |
| heatmap_plot(df, "log.median.time", "execution time")
 | |
| 
 | |
| df_square = filter(df, cbs == rbs) %>%
 | |
|   gather(key = time.from, value = acc.time, 
 | |
|     c("median.dead", "median.runtime", "median.task"))
 | |
| 
 | |
| # Colors similar to Paraver
 | |
| colors <- c("median.dead" = "gray",
 | |
|   "median.runtime" = "blue",
 | |
|   "median.task" = "red")
 | |
| 
 | |
| p = ggplot(df_square, aes(x=cbs, y=acc.time)) +
 | |
|   geom_area(aes(fill=time.from, group=time.from)) +
 | |
|   scale_fill_manual(values = colors) +
 | |
|   geom_point(aes(y=median.time, color="black")) +
 | |
|   geom_line(aes(y=median.time, group=0, color="black")) +
 | |
|   theme_bw() +
 | |
|   theme(legend.position=c(0.5, 0.7)) +
 | |
|   scale_color_identity(breaks = c("black"),
 | |
|     labels = c("Total time"), guide = "legend") +
 | |
|   labs(x="Blocksize (side)", y="Time (s)",
 | |
|     fill="Estimated", color="Direct measurement",
 | |
|     title="Heat granularity: time distribution", subtitle=output)
 | |
| 
 | |
| ggsave("area.time.png", plot=p, width=6, height=6, dpi=300)
 | |
| ggsave("area.time.pdf", plot=p, width=6, height=6, dpi=300)
 | |
| 
 | |
| p = ggplot(df_square, aes(x=cbs, y=acc.time)) +
 | |
|   geom_col(aes(fill=time.from, group=time.from)) +
 | |
|   scale_fill_manual(values = colors) +
 | |
|   theme_bw() +
 | |
|   theme(legend.position=c(0.5, 0.7)) +
 | |
|   labs(x="Blocksize (side)", y="Time (s)",
 | |
|     fill="Estimated", color="Direct measurement",
 | |
|     title="Heat granularity: time distribution", subtitle=output)
 | |
| 
 | |
| ggsave("col.time.png", plot=p, width=6, height=6, dpi=300)
 | |
| ggsave("col.time.pdf", plot=p, width=6, height=6, dpi=300)
 |