forked from rarias/jungle
		
	
		
			
				
	
	
		
			108 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
| library(ggplot2)
 | |
| library(dplyr)
 | |
| library(scales)
 | |
| library(jsonlite)
 | |
| 
 | |
| args=commandArgs(trailingOnly=TRUE)
 | |
| 
 | |
| # Read the timetable from args[1]
 | |
| input_file = "input.json"
 | |
| if (length(args)>0) { input_file = args[1] }
 | |
| 
 | |
| # Load the dataset in NDJSON format
 | |
| dataset = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
 | |
|   jsonlite::flatten()
 | |
| 
 | |
| # We only need some colums
 | |
| df = select(dataset, unit, config.nodes, config.gitBranch, time) %>%
 | |
|   rename(nodes=config.nodes, gitBranch=config.gitBranch)
 | |
| 
 | |
| df$unit = as.factor(df$unit)
 | |
| df$nnodes = df$nodes
 | |
| df$nodes = as.factor(df$nodes)
 | |
| df$gitBranch = as.factor(df$gitBranch)
 | |
| 
 | |
| # Remove the "garlic/" prefix from the gitBranch
 | |
| levels(df$gitBranch) <- substring((levels(df$gitBranch)), 8)
 | |
| 
 | |
| # Compute new columns
 | |
| D=group_by(df, unit) %>%
 | |
|   mutate(tnorm = time / median(time) - 1) %>%
 | |
|   mutate(bad = ifelse(max(abs(tnorm)) >= 0.01, 1, 0)) %>%
 | |
|   mutate(variability = ifelse(bad > 0, "large", "ok")) %>%
 | |
|   mutate(mtime = median(time)) %>%
 | |
|   mutate(nmtime = mtime*nnodes) %>%
 | |
|   mutate(ntime = time*nnodes) %>%
 | |
|   ungroup() %>%
 | |
|   mutate(min_nmtime = min(nmtime)) %>%
 | |
|   mutate(rnmtime = nmtime / min_nmtime) %>%
 | |
|   mutate(rntime = ntime / min_nmtime) %>%
 | |
|   mutate(rmeff = 1.0 / rnmtime) %>%
 | |
|   mutate(reff = 1.0 / rntime) %>%
 | |
|   group_by(gitBranch) %>%
 | |
|   mutate(tmax = max(mtime)) %>%
 | |
|   mutate(speedup=tmax/time) %>%
 | |
|   mutate(eff=speedup/nnodes) %>%
 | |
|   mutate(mspeedup=tmax/mtime) %>%
 | |
|   mutate(meff=mspeedup/nnodes) %>%
 | |
|   ungroup()
 | |
| 
 | |
| D$bad = as.factor(D$bad > 0)
 | |
| D$variability = as.factor(D$variability)
 | |
| 
 | |
| ppi=300
 | |
| h=5
 | |
| w=5
 | |
| 
 | |
| png("variability.png", width=1.5*w*ppi, height=h*ppi, res=ppi)
 | |
| p = ggplot(data=D, aes(x=nodes, y=tnorm, color=variability)) +
 | |
|   theme_bw() +
 | |
|   theme(plot.subtitle=element_text(size=8)) +
 | |
|   # Add the maximum allowed error lines
 | |
|   geom_hline(yintercept=c(-0.01, 0.01),
 | |
|     linetype="dashed", color="gray") +
 | |
|   # Draw boxplots
 | |
|   geom_boxplot(aes(fill=gitBranch)) +
 | |
|   scale_color_manual(values=c("brown", "black")) +
 | |
|   # Labels
 | |
|   labs(x="Nodes", y="Normalized time", title="Creams strong scaling",
 | |
|     subtitle=input_file)
 | |
| print(p)
 | |
| dev.off()
 | |
| 
 | |
| png("time.png", width=w*1.5*ppi, height=h*ppi, res=ppi)
 | |
| p = ggplot(D, aes(x=nodes, y=mtime, color=gitBranch)) +
 | |
|   theme_bw() +
 | |
|   theme(plot.subtitle=element_text(size=8)) +
 | |
|   geom_line(aes(group=gitBranch)) +
 | |
|   #geom_point() +
 | |
|   geom_point(aes(shape=variability), size=3) +
 | |
|   scale_shape_manual(values=c(21, 19)) +
 | |
|   #  position=position_dodge(width=0.3)) +
 | |
|   #scale_x_continuous(trans=log2_trans()) +
 | |
|   scale_y_continuous(trans=log2_trans()) +
 | |
|   labs(x="Nodes", y="Time (s)",
 | |
|     title="Creams strong scaling (lower is better)",
 | |
|     subtitle=input_file)
 | |
| print(p)
 | |
| dev.off()
 | |
| 
 | |
| png("refficiency.png", width=w*1.5*ppi, height=h*ppi, res=ppi)
 | |
| p = ggplot(D, aes(x=nodes, y=rmeff, color=gitBranch)) +
 | |
|   theme_bw() +
 | |
|   theme(plot.subtitle=element_text(size=8)) +
 | |
|   geom_line(aes(group=gitBranch)) +
 | |
|   geom_point(aes(shape=variability), size=3) +
 | |
|   #geom_boxplot(aes(y=reff),
 | |
|   #  position=position_dodge(width=0.0)) +
 | |
|   scale_shape_manual(values=c(21, 19)) +
 | |
|   #geom_point(aes(y=rntime),
 | |
|   #  position=position_dodge(width=0.3)) +
 | |
|   #scale_x_continuous(trans=log2_trans()) +
 | |
|   #scale_y_continuous(trans=log2_trans()) +
 | |
|   labs(x="Nodes", y="Relative efficiency (to best)",
 | |
|     title="Creams strong scaling (higher is better)",
 | |
|     subtitle=input_file)
 | |
| print(p)
 | |
| dev.off()
 |