forked from rarias/jungle
		
	
		
			
				
	
	
		
			96 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
			
		
		
	
	
			96 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
| library(ggplot2)
 | |
| library(dplyr)
 | |
| library(scales)
 | |
| library(jsonlite)
 | |
| 
 | |
| args=commandArgs(trailingOnly=TRUE)
 | |
| 
 | |
| # Read the timetable from args[1]
 | |
| input_file = "input.json"
 | |
| if (length(args)>0) { input_file = args[1] }
 | |
| 
 | |
| # Load the dataset in NDJSON format
 | |
| dataset = jsonlite::stream_in(file(input_file)) %>%
 | |
| 	jsonlite::flatten()
 | |
| 
 | |
| 
 | |
| # We only need the nblocks and time
 | |
| df = select(dataset, config.bsx, time) %>%
 | |
| 	rename(bsx=config.bsx)
 | |
| 
 | |
| df$bsx = as.factor(df$bsx)
 | |
| 
 | |
| # Normalize the time by the median
 | |
| D=group_by(df, bsx) %>%
 | |
| 	mutate(tnorm = time / median(time) - 1)
 | |
| 
 | |
| print(D)
 | |
| 
 | |
| ppi=300
 | |
| h=5
 | |
| w=5
 | |
| 
 | |
| png("box.png", width=w*ppi, height=h*ppi, res=ppi)
 | |
| #
 | |
| #
 | |
| #
 | |
| # Create the plot with the normalized time vs nblocks
 | |
| p = ggplot(data=D, aes(x=bsx, y=tnorm)) +
 | |
| 
 | |
| 	# Labels
 | |
| 	labs(x="bsx", y="Normalized time",
 | |
|               title=sprintf("Heat normalized time"), 
 | |
|               subtitle=input_file) +
 | |
| 
 | |
| 	# Center the title
 | |
| 	#theme(plot.title = element_text(hjust = 0.5)) +
 | |
| 
 | |
| 	# Black and white mode (useful for printing)
 | |
| 	#theme_bw() +
 | |
| 
 | |
| 	# Add the maximum allowed error lines
 | |
| 	geom_hline(yintercept=c(-0.01, 0.01),
 | |
| 		linetype="dashed", color="red") +
 | |
| 
 | |
| 	# Draw boxplots
 | |
| 	geom_boxplot() +
 | |
| 
 | |
| 	#scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
 | |
| 
 | |
| 	theme_bw() +
 | |
| 
 | |
| 	theme(plot.subtitle=element_text(size=8)) +
 | |
| 
 | |
| 	theme(legend.position = c(0.85, 0.85)) #+
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| # Render the plot
 | |
| print(p)
 | |
| 
 | |
| ## Save the png image
 | |
| dev.off()
 | |
| #
 | |
| png("scatter.png", width=w*ppi, height=h*ppi, res=ppi)
 | |
| #
 | |
| ## Create the plot with the normalized time vs nblocks
 | |
| p = ggplot(D, aes(x=bsx, y=time)) +
 | |
| 
 | |
| 	labs(x="bsx", y="Time (s)",
 | |
|               title=sprintf("Heat granularity"), 
 | |
|               subtitle=input_file) +
 | |
| 	theme_bw() +
 | |
| 	theme(plot.subtitle=element_text(size=8)) +
 | |
| 	theme(legend.position = c(0.5, 0.88)) +
 | |
| 
 | |
| 	geom_point(shape=21, size=3) +
 | |
| 	#scale_x_continuous(trans=log2_trans()) +
 | |
| 	scale_y_continuous(trans=log2_trans())
 | |
| 
 | |
| # Render the plot
 | |
| print(p)
 | |
| 
 | |
| # Save the png image
 | |
| dev.off()
 |