forked from rarias/jungle
		
	
		
			
				
	
	
		
			78 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
| library(ggplot2)
 | |
| library(dplyr)
 | |
| library(scales)
 | |
| library(jsonlite)
 | |
| library(viridis)
 | |
| 
 | |
| args=commandArgs(trailingOnly=TRUE)
 | |
| 
 | |
| # Read the timetable from args[1]
 | |
| input_file = "input.json"
 | |
| if (length(args)>0) { input_file = args[1] }
 | |
| 
 | |
| # Load the dataset in NDJSON format
 | |
| dataset = jsonlite::stream_in(file(input_file)) %>%
 | |
| 	jsonlite::flatten()
 | |
| 
 | |
| # We only need the nblocks and time
 | |
| df = select(dataset, config.cbs, config.rbs, perf.cache_misses, perf.instructions, perf.cycles, time) %>%
 | |
| 	rename(cbs=config.cbs, rbs=config.rbs)
 | |
| 
 | |
| df$cbs = as.factor(df$cbs)
 | |
| df$rbs = as.factor(df$rbs)
 | |
| 
 | |
| # Normalize the time by the median
 | |
| df=group_by(df, cbs, rbs) %>%
 | |
| 	mutate(median.time = median(time)) %>%
 | |
| 	mutate(log.median.time = log(median.time)) %>%
 | |
| 	mutate(median.misses = median(perf.cache_misses)) %>%
 | |
| 	mutate(log.median.misses = log(median.misses)) %>%
 | |
| 	mutate(median.instr= median(perf.instructions)) %>%
 | |
| 	mutate(log.median.instr= log(median.instr)) %>%
 | |
| 	mutate(median.cycles = median(perf.cycles)) %>%
 | |
| 	mutate(median.cpi = median.cycles / median.instr) %>%
 | |
| 	mutate(median.ipc = median.instr / median.cycles) %>%
 | |
| 	mutate(median.ips = median.instr / median.time) %>%
 | |
| 	mutate(median.cps = median.cycles / median.time) %>%
 | |
|   ungroup()# %>%
 | |
| 
 | |
| heatmap_plot = function(df, colname, title) {
 | |
|   p = ggplot(df, aes(x=cbs, y=rbs, fill=!!ensym(colname))) +
 | |
|     geom_raster() +
 | |
|     #scale_fill_gradient(high="black", low="white") +
 | |
|     scale_fill_viridis(option="plasma") +
 | |
|     coord_fixed() +
 | |
|     theme_bw() +
 | |
|     theme(axis.text.x=element_text(angle = -45, hjust = 0)) +
 | |
|     theme(plot.subtitle=element_text(size=8)) +
 | |
|     #guides(fill = guide_colorbar(barwidth=15, title.position="top")) +
 | |
|     guides(fill = guide_colorbar(barwidth=12, title.vjust=0.8)) +
 | |
|     labs(x="cbs", y="rbs",
 | |
|       title=sprintf("Heat granularity: %s", title), 
 | |
|       subtitle=input_file) +
 | |
|     theme(legend.position="bottom")
 | |
| 
 | |
|   k=1
 | |
|   ggsave(sprintf("%s.png", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
 | |
|   ggsave(sprintf("%s.pdf", colname), plot=p, width=4.8*k, height=5*k, dpi=300)
 | |
| }
 | |
| 
 | |
| heatmap_plot(df, "median.misses", "cache misses")
 | |
| heatmap_plot(df, "log.median.misses", "cache misses")
 | |
| heatmap_plot(df, "median.instr", "instructions")
 | |
| heatmap_plot(df, "log.median.instr", "instructions")
 | |
| heatmap_plot(df, "median.cycles", "cycles")
 | |
| heatmap_plot(df, "median.ipc", "IPC")
 | |
| heatmap_plot(df, "median.cpi", "cycles/instruction")
 | |
| heatmap_plot(df, "median.ips", "instructions/second")
 | |
| heatmap_plot(df, "median.cps", "cycles/second")
 | |
| 
 | |
| cutlevel = 0.5
 | |
| # To plot the median.time we crop the larger values:
 | |
| df_filtered = filter(df, between(median.time,
 | |
|   median(time) - (cutlevel * sd(time)),
 | |
|   median(time) + (cutlevel * sd(time))))
 | |
| 
 | |
| heatmap_plot(df_filtered, "median.time", "execution time (seconds)")
 | |
| heatmap_plot(df_filtered, "log.median.time", "execution time")
 |