forked from rarias/jungle
		
	
		
			
				
	
	
		
			66 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
			
		
		
	
	
			66 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
| library(ggplot2)
 | |
| library(dplyr, warn.conflicts = FALSE)
 | |
| library(scales)
 | |
| library(jsonlite)
 | |
| 
 | |
| args=commandArgs(trailingOnly=TRUE)
 | |
| 
 | |
| # Read the timetable from args[1]
 | |
| input_file = "input.json"
 | |
| if (length(args)>0) { input_file = args[1] }
 | |
| 
 | |
| # Load the dataset in NDJSON format
 | |
| dataset = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
 | |
| 	jsonlite::flatten()
 | |
| 
 | |
| # We only need the nblocks and time
 | |
| df = select(dataset, config.unitName, config.nodes, config.ntasksPerNode, config.cpusPerTask, size, bw) %>%
 | |
| 	rename(unitName=config.unitName)
 | |
| 
 | |
| nodes = unique(df$config.nodes)
 | |
| tasksPerNode = unique(df$config.ntasksPerNode)
 | |
| cpusPerTask = unique(df$config.cpusPerTask)
 | |
| df$unitName = as.factor(df$unitName)
 | |
| df$sizeFactor = as.factor(df$size)
 | |
| 
 | |
| df = group_by(df, unitName, sizeFactor) %>%
 | |
|   mutate(medianBw = median(bw)) %>%
 | |
|   ungroup()
 | |
| 
 | |
| breaks = 10^(-10:10)
 | |
| minor_breaks <- rep(1:9, 21)*(10^rep(-10:10, each=9))
 | |
| 
 | |
| p = ggplot(data=df, aes(x=size, y=bw)) +
 | |
| 	labs(x="Size (bytes)", y="Bandwidth (MB/s)",
 | |
|               title=sprintf("OSU bandwidth benchmark: nodes=%d tasksPerNode=%d cpusPerTask=%d",
 | |
| 			    nodes, tasksPerNode, cpusPerTask), 
 | |
|               subtitle=input_file) +
 | |
| 	geom_boxplot(aes(color=unitName, group=interaction(unitName, sizeFactor))) +
 | |
| 	scale_x_continuous(trans=log2_trans()) +
 | |
| 	#scale_y_log10(breaks = breaks, minor_breaks = minor_breaks) +
 | |
| 	theme_bw() +
 | |
| 	theme(legend.position = c(0.8, 0.2))
 | |
| 
 | |
| ppi=300
 | |
| h=4
 | |
| w=8
 | |
| ggsave("boxplot.pdf", plot=p, width=w, height=h, dpi=ppi)
 | |
| ggsave("boxplot.png", plot=p, width=w, height=h, dpi=ppi)
 | |
| 
 | |
| p = ggplot(data=df, aes(x=size, y=medianBw)) +
 | |
| 	labs(x="Size (bytes)", y="Bandwidth (MB/s)",
 | |
|               title=sprintf("OSU benchmark: osu_bw",
 | |
| 			    nodes, tasksPerNode, cpusPerTask), 
 | |
|               subtitle=input_file) +
 | |
| 	geom_line(aes(color=unitName, linetype=unitName)) +
 | |
| 	geom_point(aes(color=unitName, shape=unitName)) +
 | |
|   geom_hline(yintercept = 100e3 / 8, color="red") +
 | |
|   annotate("text", x = 8, y = (100e3 / 8) * 0.95, label = "12.5GB/s (100Gb/s)") +
 | |
| 	scale_x_continuous(trans=log2_trans()) +
 | |
| 	#scale_y_log10(breaks = breaks, minor_breaks = minor_breaks) +
 | |
| 	theme_bw() +
 | |
| 	theme(legend.position = c(0.8, 0.2))
 | |
| 
 | |
| ggsave("median-lines.png", plot=p, width=w, height=h, dpi=ppi)
 | |
| ggsave("median-lines.pdf", plot=p, width=w, height=h, dpi=ppi)
 |