Add CUDA shell example

This commit is contained in:
2026-02-03 18:20:23 +01:00
parent 0775e1ce73
commit 0495bf0dee
6 changed files with 705 additions and 0 deletions

1
cuda/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
cudainfo

12
cuda/Makefile Normal file
View File

@@ -0,0 +1,12 @@
HOSTCXX ?= g++
NVCC := nvcc -ccbin $(HOSTCXX)
CXXFLAGS := -m64 -Wno-deprecated-gpu-targets
# Target rules
all: cudainfo
cudainfo: cudainfo.cpp
$(NVCC) $(CXXFLAGS) -o $@ $<
clean:
rm -f cudainfo cudainfo.o

4
cuda/README.md Normal file
View File

@@ -0,0 +1,4 @@
# CUDA example
Run `nix develop` to load the environment and `make` to build the example CUDA
program. Run it with `./cudainfo` from the fox machine to test it.

600
cuda/cudainfo.cpp Normal file
View File

@@ -0,0 +1,600 @@
/*
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
/* This sample queries the properties of the CUDA devices present in the system via CUDA Runtime API. */
// Shared Utilities (QA Testing)
// std::system includes
#include <memory>
#include <iostream>
#include <cuda_runtime.h>
// This will output the proper CUDA error strings in the event that a CUDA host call returns an error
#define checkCudaErrors(val) check ( (val), #val, __FILE__, __LINE__ )
// CUDA Runtime error messages
#ifdef __DRIVER_TYPES_H__
static const char *_cudaGetErrorEnum(cudaError_t error)
{
switch (error)
{
case cudaSuccess:
return "cudaSuccess";
case cudaErrorMissingConfiguration:
return "cudaErrorMissingConfiguration";
case cudaErrorMemoryAllocation:
return "cudaErrorMemoryAllocation";
case cudaErrorInitializationError:
return "cudaErrorInitializationError";
case cudaErrorLaunchFailure:
return "cudaErrorLaunchFailure";
case cudaErrorPriorLaunchFailure:
return "cudaErrorPriorLaunchFailure";
case cudaErrorLaunchTimeout:
return "cudaErrorLaunchTimeout";
case cudaErrorLaunchOutOfResources:
return "cudaErrorLaunchOutOfResources";
case cudaErrorInvalidDeviceFunction:
return "cudaErrorInvalidDeviceFunction";
case cudaErrorInvalidConfiguration:
return "cudaErrorInvalidConfiguration";
case cudaErrorInvalidDevice:
return "cudaErrorInvalidDevice";
case cudaErrorInvalidValue:
return "cudaErrorInvalidValue";
case cudaErrorInvalidPitchValue:
return "cudaErrorInvalidPitchValue";
case cudaErrorInvalidSymbol:
return "cudaErrorInvalidSymbol";
case cudaErrorMapBufferObjectFailed:
return "cudaErrorMapBufferObjectFailed";
case cudaErrorUnmapBufferObjectFailed:
return "cudaErrorUnmapBufferObjectFailed";
case cudaErrorInvalidHostPointer:
return "cudaErrorInvalidHostPointer";
case cudaErrorInvalidDevicePointer:
return "cudaErrorInvalidDevicePointer";
case cudaErrorInvalidTexture:
return "cudaErrorInvalidTexture";
case cudaErrorInvalidTextureBinding:
return "cudaErrorInvalidTextureBinding";
case cudaErrorInvalidChannelDescriptor:
return "cudaErrorInvalidChannelDescriptor";
case cudaErrorInvalidMemcpyDirection:
return "cudaErrorInvalidMemcpyDirection";
case cudaErrorAddressOfConstant:
return "cudaErrorAddressOfConstant";
case cudaErrorTextureFetchFailed:
return "cudaErrorTextureFetchFailed";
case cudaErrorTextureNotBound:
return "cudaErrorTextureNotBound";
case cudaErrorSynchronizationError:
return "cudaErrorSynchronizationError";
case cudaErrorInvalidFilterSetting:
return "cudaErrorInvalidFilterSetting";
case cudaErrorInvalidNormSetting:
return "cudaErrorInvalidNormSetting";
case cudaErrorMixedDeviceExecution:
return "cudaErrorMixedDeviceExecution";
case cudaErrorCudartUnloading:
return "cudaErrorCudartUnloading";
case cudaErrorUnknown:
return "cudaErrorUnknown";
case cudaErrorNotYetImplemented:
return "cudaErrorNotYetImplemented";
case cudaErrorMemoryValueTooLarge:
return "cudaErrorMemoryValueTooLarge";
case cudaErrorInvalidResourceHandle:
return "cudaErrorInvalidResourceHandle";
case cudaErrorNotReady:
return "cudaErrorNotReady";
case cudaErrorInsufficientDriver:
return "cudaErrorInsufficientDriver";
case cudaErrorSetOnActiveProcess:
return "cudaErrorSetOnActiveProcess";
case cudaErrorInvalidSurface:
return "cudaErrorInvalidSurface";
case cudaErrorNoDevice:
return "cudaErrorNoDevice";
case cudaErrorECCUncorrectable:
return "cudaErrorECCUncorrectable";
case cudaErrorSharedObjectSymbolNotFound:
return "cudaErrorSharedObjectSymbolNotFound";
case cudaErrorSharedObjectInitFailed:
return "cudaErrorSharedObjectInitFailed";
case cudaErrorUnsupportedLimit:
return "cudaErrorUnsupportedLimit";
case cudaErrorDuplicateVariableName:
return "cudaErrorDuplicateVariableName";
case cudaErrorDuplicateTextureName:
return "cudaErrorDuplicateTextureName";
case cudaErrorDuplicateSurfaceName:
return "cudaErrorDuplicateSurfaceName";
case cudaErrorDevicesUnavailable:
return "cudaErrorDevicesUnavailable";
case cudaErrorInvalidKernelImage:
return "cudaErrorInvalidKernelImage";
case cudaErrorNoKernelImageForDevice:
return "cudaErrorNoKernelImageForDevice";
case cudaErrorIncompatibleDriverContext:
return "cudaErrorIncompatibleDriverContext";
case cudaErrorPeerAccessAlreadyEnabled:
return "cudaErrorPeerAccessAlreadyEnabled";
case cudaErrorPeerAccessNotEnabled:
return "cudaErrorPeerAccessNotEnabled";
case cudaErrorDeviceAlreadyInUse:
return "cudaErrorDeviceAlreadyInUse";
case cudaErrorProfilerDisabled:
return "cudaErrorProfilerDisabled";
case cudaErrorProfilerNotInitialized:
return "cudaErrorProfilerNotInitialized";
case cudaErrorProfilerAlreadyStarted:
return "cudaErrorProfilerAlreadyStarted";
case cudaErrorProfilerAlreadyStopped:
return "cudaErrorProfilerAlreadyStopped";
/* Since CUDA 4.0*/
case cudaErrorAssert:
return "cudaErrorAssert";
case cudaErrorTooManyPeers:
return "cudaErrorTooManyPeers";
case cudaErrorHostMemoryAlreadyRegistered:
return "cudaErrorHostMemoryAlreadyRegistered";
case cudaErrorHostMemoryNotRegistered:
return "cudaErrorHostMemoryNotRegistered";
/* Since CUDA 5.0 */
case cudaErrorOperatingSystem:
return "cudaErrorOperatingSystem";
case cudaErrorPeerAccessUnsupported:
return "cudaErrorPeerAccessUnsupported";
case cudaErrorLaunchMaxDepthExceeded:
return "cudaErrorLaunchMaxDepthExceeded";
case cudaErrorLaunchFileScopedTex:
return "cudaErrorLaunchFileScopedTex";
case cudaErrorLaunchFileScopedSurf:
return "cudaErrorLaunchFileScopedSurf";
case cudaErrorSyncDepthExceeded:
return "cudaErrorSyncDepthExceeded";
case cudaErrorLaunchPendingCountExceeded:
return "cudaErrorLaunchPendingCountExceeded";
case cudaErrorNotPermitted:
return "cudaErrorNotPermitted";
case cudaErrorNotSupported:
return "cudaErrorNotSupported";
/* Since CUDA 6.0 */
case cudaErrorHardwareStackError:
return "cudaErrorHardwareStackError";
case cudaErrorIllegalInstruction:
return "cudaErrorIllegalInstruction";
case cudaErrorMisalignedAddress:
return "cudaErrorMisalignedAddress";
case cudaErrorInvalidAddressSpace:
return "cudaErrorInvalidAddressSpace";
case cudaErrorInvalidPc:
return "cudaErrorInvalidPc";
case cudaErrorIllegalAddress:
return "cudaErrorIllegalAddress";
/* Since CUDA 6.5*/
case cudaErrorInvalidPtx:
return "cudaErrorInvalidPtx";
case cudaErrorInvalidGraphicsContext:
return "cudaErrorInvalidGraphicsContext";
case cudaErrorStartupFailure:
return "cudaErrorStartupFailure";
case cudaErrorApiFailureBase:
return "cudaErrorApiFailureBase";
}
return "<unknown>";
}
#endif
template< typename T >
void check(T result, char const *const func, const char *const file, int const line)
{
if (result)
{
fprintf(stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n",
file, line, static_cast<unsigned int>(result), _cudaGetErrorEnum(result), func);
cudaDeviceReset();
// Make sure we call CUDA Device Reset before exiting
exit(EXIT_FAILURE);
}
}
int *pArgc = NULL;
char **pArgv = NULL;
#if CUDART_VERSION < 5000
// CUDA-C includes
#include <cuda.h>
// This function wraps the CUDA Driver API into a template function
template <class T>
inline void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device)
{
CUresult error = cuDeviceGetAttribute(attribute, device_attribute, device);
if (CUDA_SUCCESS != error) {
fprintf(stderr, "cuSafeCallNoSync() Driver API error = %04d from file <%s>, line %i.\n",
error, __FILE__, __LINE__);
// cudaDeviceReset causes the driver to clean up all state. While
// not mandatory in normal operation, it is good practice. It is also
// needed to ensure correct operation when the application is being
// profiled. Calling cudaDeviceReset causes all profile data to be
// flushed before the application exits
cudaDeviceReset();
exit(EXIT_FAILURE);
}
}
#endif /* CUDART_VERSION < 5000 */
// Beginning of GPU Architecture definitions
inline int ConvertSMVer2Cores(int major, int minor)
{
// Defines for GPU Architecture types (using the SM version to determine the # of cores per SM
typedef struct {
int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version
int Cores;
} sSMtoCores;
sSMtoCores nGpuArchCoresPerSM[] = {
{ 0x20, 32 }, // Fermi Generation (SM 2.0) GF100 class
{ 0x21, 48 }, // Fermi Generation (SM 2.1) GF10x class
{ 0x30, 192}, // Kepler Generation (SM 3.0) GK10x class
{ 0x32, 192}, // Kepler Generation (SM 3.2) GK10x class
{ 0x35, 192}, // Kepler Generation (SM 3.5) GK11x class
{ 0x37, 192}, // Kepler Generation (SM 3.7) GK21x class
{ 0x50, 128}, // Maxwell Generation (SM 5.0) GM10x class
{ 0x52, 128}, // Maxwell Generation (SM 5.2) GM20x class
{ -1, -1 }
};
int index = 0;
while (nGpuArchCoresPerSM[index].SM != -1) {
if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) {
return nGpuArchCoresPerSM[index].Cores;
}
index++;
}
// If we don't find the values, we default use the previous one to run properly
printf("MapSMtoCores for SM %d.%d is undefined. Default to use %d Cores/SM\n", major, minor, nGpuArchCoresPerSM[index-1].Cores);
return nGpuArchCoresPerSM[index-1].Cores;
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int
main(int argc, char **argv)
{
pArgc = &argc;
pArgv = argv;
printf("%s Starting...\n\n", argv[0]);
printf(" CUDA Device Query (Runtime API) version (CUDART static linking)\n\n");
int deviceCount = 0;
cudaError_t error_id = cudaGetDeviceCount(&deviceCount);
if (error_id != cudaSuccess) {
printf("cudaGetDeviceCount failed: %s (%d)\n",
cudaGetErrorString(error_id), (int) error_id);
printf("Result = FAIL\n");
exit(EXIT_FAILURE);
}
// This function call returns 0 if there are no CUDA capable devices.
if (deviceCount == 0)
printf("There are no available device(s) that support CUDA\n");
else
printf("Detected %d CUDA Capable device(s)\n", deviceCount);
int dev, driverVersion = 0, runtimeVersion = 0;
for (dev = 0; dev < deviceCount; ++dev) {
cudaSetDevice(dev);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
printf("\nDevice %d: \"%s\"\n", dev, deviceProp.name);
// Console log
cudaDriverGetVersion(&driverVersion);
cudaRuntimeGetVersion(&runtimeVersion);
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, (driverVersion%100)/10, runtimeVersion/1000, (runtimeVersion%100)/10);
printf(" CUDA Capability Major/Minor version number: %d.%d\n", deviceProp.major, deviceProp.minor);
printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n",
(float)deviceProp.totalGlobalMem/1048576.0f, (unsigned long long) deviceProp.totalGlobalMem);
printf(" (%2d) Multiprocessors, (%3d) CUDA Cores/MP: %d CUDA Cores\n",
deviceProp.multiProcessorCount,
ConvertSMVer2Cores(deviceProp.major, deviceProp.minor),
ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) * deviceProp.multiProcessorCount);
printf(" GPU Max Clock rate: %.0f MHz (%0.2f GHz)\n", deviceProp.clockRate * 1e-3f, deviceProp.clockRate * 1e-6f);
#if CUDART_VERSION >= 5000
// This is supported in CUDA 5.0 (runtime API device properties)
printf(" Memory Clock rate: %.0f Mhz\n", deviceProp.memoryClockRate * 1e-3f);
printf(" Memory Bus Width: %d-bit\n", deviceProp.memoryBusWidth);
if (deviceProp.l2CacheSize) {
printf(" L2 Cache Size: %d bytes\n", deviceProp.l2CacheSize);
}
#else
// This only available in CUDA 4.0-4.2 (but these were only exposed in the CUDA Driver API)
int memoryClock;
getCudaAttribute<int>(&memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev);
printf(" Memory Clock rate: %.0f Mhz\n", memoryClock * 1e-3f);
int memBusWidth;
getCudaAttribute<int>(&memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev);
printf(" Memory Bus Width: %d-bit\n", memBusWidth);
int L2CacheSize;
getCudaAttribute<int>(&L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev);
if (L2CacheSize) {
printf(" L2 Cache Size: %d bytes\n", L2CacheSize);
}
#endif
printf(" Maximum Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d, %d), 3D=(%d, %d, %d)\n",
deviceProp.maxTexture1D , deviceProp.maxTexture2D[0], deviceProp.maxTexture2D[1],
deviceProp.maxTexture3D[0], deviceProp.maxTexture3D[1], deviceProp.maxTexture3D[2]);
printf(" Maximum Layered 1D Texture Size, (num) layers 1D=(%d), %d layers\n",
deviceProp.maxTexture1DLayered[0], deviceProp.maxTexture1DLayered[1]);
printf(" Maximum Layered 2D Texture Size, (num) layers 2D=(%d, %d), %d layers\n",
deviceProp.maxTexture2DLayered[0], deviceProp.maxTexture2DLayered[1], deviceProp.maxTexture2DLayered[2]);
printf(" Total amount of constant memory: %lu bytes\n", deviceProp.totalConstMem);
printf(" Total amount of shared memory per block: %lu bytes\n", deviceProp.sharedMemPerBlock);
printf(" Total number of registers available per block: %d\n", deviceProp.regsPerBlock);
printf(" Warp size: %d\n", deviceProp.warpSize);
printf(" Maximum number of threads per multiprocessor: %d\n", deviceProp.maxThreadsPerMultiProcessor);
printf(" Maximum number of threads per block: %d\n", deviceProp.maxThreadsPerBlock);
printf(" Max dimension size of a thread block (x,y,z): (%d, %d, %d)\n",
deviceProp.maxThreadsDim[0],
deviceProp.maxThreadsDim[1],
deviceProp.maxThreadsDim[2]);
printf(" Max dimension size of a grid size (x,y,z): (%d, %d, %d)\n",
deviceProp.maxGridSize[0],
deviceProp.maxGridSize[1],
deviceProp.maxGridSize[2]);
printf(" Maximum memory pitch: %lu bytes\n", deviceProp.memPitch);
printf(" Texture alignment: %lu bytes\n", deviceProp.textureAlignment);
printf(" Concurrent copy and kernel execution: %s with %d copy engine(s)\n", (deviceProp.deviceOverlap ? "Yes" : "No"), deviceProp.asyncEngineCount);
printf(" Run time limit on kernels: %s\n", deviceProp.kernelExecTimeoutEnabled ? "Yes" : "No");
printf(" Integrated GPU sharing Host Memory: %s\n", deviceProp.integrated ? "Yes" : "No");
printf(" Support host page-locked memory mapping: %s\n", deviceProp.canMapHostMemory ? "Yes" : "No");
printf(" Alignment requirement for Surfaces: %s\n", deviceProp.surfaceAlignment ? "Yes" : "No");
printf(" Device has ECC support: %s\n", deviceProp.ECCEnabled ? "Enabled" : "Disabled");
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
printf(" CUDA Device Driver Mode (TCC or WDDM): %s\n", deviceProp.tccDriver ? "TCC (Tesla Compute Cluster Driver)" : "WDDM (Windows Display Driver Model)");
#endif
printf(" Device supports Unified Addressing (UVA): %s\n", deviceProp.unifiedAddressing ? "Yes" : "No");
printf(" Device PCI Domain ID / Bus ID / location ID: %d / %d / %d\n", deviceProp.pciDomainID, deviceProp.pciBusID, deviceProp.pciDeviceID);
const char *sComputeMode[] = {
"Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)",
"Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)",
"Prohibited (no host thread can use ::cudaSetDevice() with this device)",
"Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)",
"Unknown",
NULL
};
printf(" Compute Mode:\n");
printf(" < %s >\n", sComputeMode[deviceProp.computeMode]);
}
// If there are 2 or more GPUs, query to determine whether RDMA is supported
if (deviceCount >= 2)
{
cudaDeviceProp prop[64];
int gpuid[64]; // we want to find the first two GPU's that can support P2P
int gpu_p2p_count = 0;
for (int i=0; i < deviceCount; i++)
{
checkCudaErrors(cudaGetDeviceProperties(&prop[i], i));
// Only boards based on Fermi or later can support P2P
if ((prop[i].major >= 2)
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
// on Windows (64-bit), the Tesla Compute Cluster driver for windows must be enabled to supprot this
&& prop[i].tccDriver
#endif
)
{
// This is an array of P2P capable GPUs
gpuid[gpu_p2p_count++] = i;
}
}
// Show all the combinations of support P2P GPUs
int can_access_peer_0_1, can_access_peer_1_0;
if (gpu_p2p_count >= 2)
{
for (int i = 0; i < gpu_p2p_count-1; i++)
{
for (int j = 1; j < gpu_p2p_count; j++)
{
checkCudaErrors(cudaDeviceCanAccessPeer(&can_access_peer_0_1, gpuid[i], gpuid[j]));
printf("> Peer access from %s (GPU%d) -> %s (GPU%d) : %s\n", prop[gpuid[i]].name, gpuid[i],
prop[gpuid[j]].name, gpuid[j] ,
can_access_peer_0_1 ? "Yes" : "No");
}
}
for (int j = 1; j < gpu_p2p_count; j++)
{
for (int i = 0; i < gpu_p2p_count-1; i++)
{
checkCudaErrors(cudaDeviceCanAccessPeer(&can_access_peer_1_0, gpuid[j], gpuid[i]));
printf("> Peer access from %s (GPU%d) -> %s (GPU%d) : %s\n", prop[gpuid[j]].name, gpuid[j],
prop[gpuid[i]].name, gpuid[i] ,
can_access_peer_1_0 ? "Yes" : "No");
}
}
}
}
// csv masterlog info
// *****************************
// exe and CUDA driver name
printf("\n");
std::string sProfileString = "deviceQuery, CUDA Driver = CUDART";
char cTemp[128];
// driver version
sProfileString += ", CUDA Driver Version = ";
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(cTemp, 10, "%d.%d", driverVersion/1000, (driverVersion%100)/10);
#else
sprintf(cTemp, "%d.%d", driverVersion/1000, (driverVersion%100)/10);
#endif
sProfileString += cTemp;
// Runtime version
sProfileString += ", CUDA Runtime Version = ";
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(cTemp, 10, "%d.%d", runtimeVersion/1000, (runtimeVersion%100)/10);
#else
sprintf(cTemp, "%d.%d", runtimeVersion/1000, (runtimeVersion%100)/10);
#endif
sProfileString += cTemp;
// Device count
sProfileString += ", NumDevs = ";
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(cTemp, 10, "%d", deviceCount);
#else
sprintf(cTemp, "%d", deviceCount);
#endif
sProfileString += cTemp;
// Print Out all device Names
for (dev = 0; dev < deviceCount; ++dev)
{
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(cTemp, 13, ", Device%d = ", dev);
#else
sprintf(cTemp, ", Device%d = ", dev);
#endif
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
sProfileString += cTemp;
sProfileString += deviceProp.name;
}
sProfileString += "\n";
printf("%s", sProfileString.c_str());
printf("Result = PASS\n");
// finish
// cudaDeviceReset causes the driver to clean up all state. While
// not mandatory in normal operation, it is good practice. It is also
// needed to ensure correct operation when the application is being
// profiled. Calling cudaDeviceReset causes all profile data to be
// flushed before the application exits
cudaDeviceReset();
return 0;
}

45
cuda/flake.lock generated Normal file
View File

@@ -0,0 +1,45 @@
{
"nodes": {
"jungle": {
"inputs": {
"nixpkgs": "nixpkgs"
},
"locked": {
"lastModified": 1770128250,
"narHash": "sha256-Kx3EwImhYCp4bLPNWGz4oL4IYVjkCLXwcVmXTY40MBc=",
"ref": "refs/heads/master",
"rev": "7a6e4232de0e181de97e099e600ffc3a964260e0",
"revCount": 1536,
"type": "git",
"url": "https://jungle.bsc.es/git/rarias/jungle"
},
"original": {
"type": "git",
"url": "https://jungle.bsc.es/git/rarias/jungle"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1767634882,
"narHash": "sha256-2GffSfQxe3sedHzK+sTKlYo/NTIAGzbFCIsNMUPAAnk=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "3c9db02515ef1d9b6b709fc60ba9a540957f661c",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixos-25.11",
"repo": "nixpkgs",
"type": "github"
}
},
"root": {
"inputs": {
"jungle": "jungle"
}
}
},
"root": "root",
"version": 7
}

43
cuda/flake.nix Normal file
View File

@@ -0,0 +1,43 @@
{
inputs.jungle.url = "git+https://jungle.bsc.es/git/rarias/jungle";
outputs = { self, jungle }:
let
nixpkgs = jungle.inputs.nixpkgs;
customOverlay = (final: prev: {
# Example overlay, for now empty
});
pkgs = import nixpkgs {
system = "x86_64-linux";
overlays = [
# Apply jungle overlay to get our BSC custom packages
jungle.outputs.bscOverlay
# And on top apply our local changes to customize for cluster
customOverlay
];
# Needed for CUDA
config.allowUnfree = true;
};
in {
devShells.x86_64-linux.default = pkgs.mkShell {
pname = "cuda-devshell";
# Include these packages in the shell
packages = with pkgs; [
# Cuda packages (more at https://search.nixos.org/packages)
cudatoolkit # Required for nvcc
(lib.getOutput "static" cudaPackages.cuda_cudart) # Required for -lcudart_static
cudaPackages.libcusparse
autoAddDriverRunpath
# ... add more packages from https://search.nixos.org/packages
];
# The dependencies needed to build these packages will be also included
inputsFrom = with pkgs; [
# Empty for now
];
shellHook = ''
export CUDA_PATH=${pkgs.cudatoolkit}
export LD_LIBRARY_PATH=/var/run/opengl-driver/lib
export SMS=50
'';
};
};
}