forked from rarias/bscpkgs
		
	
		
			
				
	
	
		
			68 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
| library(ggplot2)
 | |
| library(dplyr)
 | |
| library(scales)
 | |
| library(jsonlite)
 | |
| 
 | |
| args=commandArgs(trailingOnly=TRUE)
 | |
| 
 | |
| # Read the timetable from args[1]
 | |
| input_file1 = "input1.json"
 | |
| if (length(args)>0) { input_file1 = args[1] }
 | |
| 
 | |
| input_file2 = "input2.json"
 | |
| if (length(args)>1) { input_file2 = args[2] }
 | |
| 
 | |
| # Load the dataset in NDJSON format
 | |
| dataset1 = jsonlite::stream_in(file(input_file1)) %>%
 | |
| 	 jsonlite::flatten()
 | |
| dataset2 = jsonlite::stream_in(file(input_file2)) %>%
 | |
| 	 jsonlite::flatten()
 | |
| 
 | |
| # We only need the nblocks and time
 | |
| df1 = select(dataset1, config.nbx, time) %>%
 | |
| 	rename(nb1=config.nbx)
 | |
| 
 | |
| df2 = select(dataset2, config.nby, time) %>%
 | |
| 	rename(nb2=config.nby)
 | |
| 
 | |
| df1$nb1 = as.factor(df1$nb1)
 | |
| df2$nb2 = as.factor(df2$nb2)
 | |
| 
 | |
| # Normalize the time by the median
 | |
| D1=group_by(df1, nb1)
 | |
| D2=group_by(df2, nb2) 
 | |
| 
 | |
| print(D1)
 | |
| print(D2)
 | |
| 
 | |
| ppi=300
 | |
| h=5
 | |
| w=7
 | |
| 
 | |
| png("scatter_granularity_and_blocking.png", width=w*ppi, height=h*ppi, res=ppi)
 | |
| #
 | |
| ## Create the plot with the normalized time vs nblocks
 | |
| p = ggplot() +
 | |
|     geom_point(data=D1, aes(x=nb1, y=time, colour = 'nbx-nby-nbz'), shape=1, size=4) +
 | |
|     geom_point(data=D2, aes(x=nb2, y=time, colour = 'nby-nbz'), shape=1, size=4) +
 | |
| 
 | |
| 	labs(x="nb", y="Time (s)",
 | |
|               title=sprintf("Saiph-Heat3D granularity & blocking"), 
 | |
|               subtitle=input_file1) +
 | |
| 	theme_bw() +
 | |
| 	theme(plot.subtitle=element_text(size=8)) +
 | |
| 	#theme(legend.position = c(0.5, 0.88)) +
 | |
| 	theme(legend.position = "right") +
 | |
| 
 | |
| 	geom_point(shape=21, size=3) +
 | |
| 	#scale_x_continuous(trans=log2_trans()) +
 | |
| 	scale_y_continuous(trans=log2_trans()) +
 | |
| 	scale_colour_discrete("Blocked directions")
 | |
| 
 | |
| 
 | |
| # Render the plot
 | |
| print(p)
 | |
| 
 | |
| # Save the png image
 | |
| dev.off()
 | 
