forked from rarias/bscpkgs
		
	The input dataset is not enough to determine which script produced a given plot.
		
			
				
	
	
		
			213 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
			
		
		
	
	
			213 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
| library(ggplot2)
 | |
| library(dplyr)
 | |
| library(scales)
 | |
| library(jsonlite)
 | |
| library(egg)
 | |
| 
 | |
| args=commandArgs(trailingOnly=TRUE)
 | |
| 
 | |
| # Read the timetable from args[1]
 | |
| input_file = "input.json"
 | |
| if (length(args)>0) { input_file = args[1] }
 | |
| if (length(args)>1) { output = args[2] } else { output = "?" }
 | |
| 
 | |
| # Load the dataset in NDJSON format
 | |
| dataset = jsonlite::stream_in(file(input_file)) %>%
 | |
|   jsonlite::flatten()
 | |
| 
 | |
| particles = unique(dataset$config.particles)
 | |
| 
 | |
| # We only need the nblocks and time
 | |
| df = select(dataset,
 | |
|   config.nblocks,
 | |
|   config.hw.cpusPerSocket,
 | |
|   config.nodes,
 | |
|   config.blocksize,
 | |
|   config.particles,
 | |
|   config.gitBranch,
 | |
|   time) %>%
 | |
|   rename(nblocks=config.nblocks,
 | |
|     nodes=config.nodes,
 | |
|     blocksize=config.blocksize,
 | |
|     particles=config.particles,
 | |
|     gitBranch=config.gitBranch,
 | |
|     cpusPerSocket=config.hw.cpusPerSocket)
 | |
| 
 | |
| df = df %>% mutate(blocksPerCpu = nblocks / cpusPerSocket)
 | |
| df$nblocks = as.factor(df$nblocks)
 | |
| df$nodesFactor = as.factor(df$nodes)
 | |
| df$blocksPerCpuFactor = as.factor(df$blocksPerCpu)
 | |
| df$blocksizeFactor = as.factor(df$blocksize)
 | |
| df$particlesFactor = as.factor(df$particles)
 | |
| df$gitBranch = as.factor(df$gitBranch)
 | |
| 
 | |
| # Normalize the time by the median
 | |
| D=group_by(df, nblocks, nodesFactor, gitBranch) %>%
 | |
|   mutate(tmedian = median(time)) %>%
 | |
|   mutate(tn = tmedian * nodes) %>%
 | |
|   mutate(tnorm = time / median(time) - 1) %>%
 | |
|   mutate(bad = max(ifelse(abs(tnorm) >= 0.01, 1, 0))) %>%
 | |
|   ungroup() %>%
 | |
|   group_by(nodesFactor, gitBranch) %>%
 | |
|   mutate(tmedian_min = min(tmedian)) %>%
 | |
|   ungroup() %>%
 | |
|   group_by(gitBranch) %>%
 | |
|   mutate(tmin_max = max(tmedian_min)) %>%
 | |
|   mutate(tideal = tmin_max / nodes) %>%
 | |
|   ungroup()
 | |
| 
 | |
| D$bad = as.factor(D$bad)
 | |
| 
 | |
| #D$bad = as.factor(ifelse(abs(D$tnorm) >= 0.01, 2,
 | |
| #         ifelse(abs(D$tnorm) >= 0.005, 1, 0)))
 | |
| 
 | |
| bs_unique = unique(df$nblocks)
 | |
| nbs=length(bs_unique)
 | |
| 
 | |
| print(D)
 | |
| 
 | |
| ppi=300
 | |
| h=7.5
 | |
| w=7.5
 | |
| 
 | |
| png("box.png", width=w*ppi, height=h*ppi, res=ppi)
 | |
| #
 | |
| #
 | |
| #
 | |
| # Create the plot with the normalized time vs nblocks
 | |
| p = ggplot(data=D, aes(x=blocksPerCpuFactor, y=tnorm, color=bad)) +
 | |
| 
 | |
|   # Labels
 | |
|   labs(x="Blocks/CPU", y="Normalized time",
 | |
|               title=sprintf("Nbody normalized time. Particles=%d", particles), 
 | |
|               subtitle=output) +
 | |
| 
 | |
| 
 | |
|   # Center the title
 | |
|   #theme(plot.title = element_text(hjust = 0.5)) +
 | |
| 
 | |
|   # Black and white mode (useful for printing)
 | |
|   #theme_bw() +
 | |
| 
 | |
|   # Add the maximum allowed error lines
 | |
|   geom_hline(yintercept=c(-0.01, 0.01),
 | |
|     linetype="dashed", color="gray") +
 | |
| 
 | |
|   # Draw boxplots
 | |
|   geom_boxplot(aes(fill=nodesFactor)) +
 | |
|   scale_color_manual(values=c("black", "brown")) +
 | |
|   facet_grid(gitBranch ~ .) +
 | |
| 
 | |
|   #scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
 | |
| 
 | |
| 
 | |
|   #theme(legend.position = "none")
 | |
|   #theme(legend.position = c(0.85, 0.85))
 | |
|   theme_bw()+
 | |
|   theme(plot.subtitle=element_text(size=8))
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| # Render the plot
 | |
| print(p)
 | |
| dev.off()
 | |
| 
 | |
| 
 | |
| p1 = ggplot(D, aes(x=blocksizeFactor, y=time)) +
 | |
| 
 | |
|   labs(x="Blocksize", y="Time (s)",
 | |
|               title=sprintf("Nbody granularity. Particles=%d", particles), 
 | |
|               subtitle=output) +
 | |
|   theme_bw() +
 | |
|   theme(plot.subtitle=element_text(size=8)) +
 | |
|   #theme(legend.position = c(0.5, 0.8)) +
 | |
| 
 | |
|   geom_line(aes(y=tmedian,
 | |
|     group=interaction(gitBranch, nodesFactor),
 | |
|     color=nodesFactor)) +
 | |
|   geom_point(aes(color=nodesFactor), size=3, shape=21) +
 | |
|   facet_grid(gitBranch ~ .) +
 | |
|   scale_shape_manual(values=c(21, 22)) +
 | |
|   scale_y_continuous(trans=log2_trans())
 | |
| 
 | |
| png("time-blocksize.png", width=w*ppi, height=h*ppi, res=ppi)
 | |
| print(p1)
 | |
| dev.off()
 | |
| 
 | |
| p2 = ggplot(D, aes(x=blocksPerCpuFactor, y=time)) +
 | |
| 
 | |
|   labs(x="Blocks/CPU", y="Time (s)",
 | |
|               title=sprintf("Nbody granularity. Particles=%d", particles), 
 | |
|               subtitle=output) +
 | |
|   theme_bw() +
 | |
|   theme(plot.subtitle=element_text(size=8)) +
 | |
| 
 | |
|   geom_line(aes(y=tmedian,
 | |
|     group=interaction(gitBranch, nodesFactor),
 | |
|     color=nodesFactor)) +
 | |
|   geom_point(aes(color=nodesFactor), size=3, shape=21) +
 | |
|   facet_grid(gitBranch ~ .) +
 | |
| 
 | |
|   scale_shape_manual(values=c(21, 22)) +
 | |
|   scale_y_continuous(trans=log2_trans())
 | |
| 
 | |
| png("time-blocks-per-cpu.png", width=w*ppi, height=h*ppi, res=ppi)
 | |
| print(p2)
 | |
| dev.off()
 | |
| 
 | |
| #p = ggarrange(p1, p2, ncol=2)
 | |
| #png("time-gra.png", width=2*w*ppi, height=h*ppi, res=ppi)
 | |
| #print(p)
 | |
| #dev.off()
 | |
| 
 | |
| 
 | |
| 
 | |
| png("exp-space.png", width=w*ppi, height=h*ppi, res=ppi)
 | |
| p = ggplot(data=df, aes(x=nodesFactor, y=particlesFactor)) +
 | |
|   labs(x="Nodes", y="Particles", title="Nbody: Experiment space") +
 | |
|   geom_line(aes(group=particles)) +
 | |
|   geom_point(aes(color=nodesFactor), size=3) +
 | |
|   facet_grid(gitBranch ~ .) +
 | |
|   theme_bw()
 | |
| print(p)
 | |
| dev.off()
 | |
| 
 | |
| 
 | |
| png("gra-space.png", width=w*ppi, height=h*ppi, res=ppi)
 | |
| p = ggplot(data=D, aes(x=nodesFactor, y=blocksPerCpuFactor)) +
 | |
|   labs(x="Nodes", y="Blocks/CPU", title="Nbody: Granularity space") +
 | |
|   geom_line(aes(group=nodesFactor)) +
 | |
|   geom_point(aes(color=nodesFactor), size=3) +
 | |
|   facet_grid(gitBranch ~ .) +
 | |
|   theme_bw()
 | |
| print(p)
 | |
| dev.off()
 | |
| 
 | |
| 
 | |
| png("performance.png", width=w*ppi, height=h*ppi, res=ppi)
 | |
| p = ggplot(D, aes(x=nodesFactor)) +
 | |
|   labs(x="Nodes", y="Time (s)", title="Nbody strong scaling") +
 | |
|   theme_bw() +
 | |
|   geom_line(aes(y=tmedian,
 | |
|     linetype=blocksPerCpuFactor,
 | |
|     group=interaction(gitBranch, blocksPerCpuFactor))) +
 | |
|   geom_line(aes(y=tideal, group=gitBranch), color="red") +
 | |
|   geom_point(aes(y=tmedian, color=nodesFactor), size=3) +
 | |
|   facet_grid(gitBranch ~ .) +
 | |
|   scale_shape_manual(values=c(21, 22)) +
 | |
|   scale_y_continuous(trans=log2_trans())
 | |
| print(p)
 | |
| dev.off()
 | |
| 
 | |
| 
 | |
| png("time-nodes.png", width=w*ppi, height=h*ppi, res=ppi)
 | |
| p = ggplot(D, aes(x=nodesFactor)) +
 | |
|   labs(x="Nodes", y="Time * nodes (s)", title="Nbody strong scaling") +
 | |
|   theme_bw() +
 | |
|   geom_line(aes(y=tn, group=gitBranch)) +
 | |
|   facet_grid(gitBranch ~ .) +
 | |
|   scale_y_continuous(trans=log2_trans())
 | |
| print(p)
 | |
| dev.off()
 |