forked from rarias/bscpkgs
		
	
		
			
				
	
	
		
			78 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			R
		
	
	
	
	
	
| library(ggplot2)
 | |
| library(dplyr, warn.conflicts = FALSE)
 | |
| library(scales)
 | |
| library(jsonlite)
 | |
| library(stringr)
 | |
| 
 | |
| args=commandArgs(trailingOnly=TRUE)
 | |
| 
 | |
| # Read the timetable from args[1]
 | |
| input_file = "input.json"
 | |
| if (length(args)>0) { input_file = args[1] }
 | |
| if (length(args)>1) { output = args[2] } else { output = "?" }
 | |
| 
 | |
| # Load the dataset in NDJSON format
 | |
| dataset = jsonlite::stream_in(file(input_file), verbose=FALSE) %>%
 | |
| 	jsonlite::flatten()
 | |
| 
 | |
| # We only need the nblocks and time
 | |
| df = select(dataset, config.unitName, config.nodes, config.ntasksPerNode, config.cpusPerTask, size, latency) %>%
 | |
| 	rename(unitName=config.unitName) %>%
 | |
|   mutate(unitName=str_replace(unitName, "osu-latency-", ""))
 | |
| 
 | |
| nodes = unique(df$config.nodes)
 | |
| tasksPerNode = unique(df$config.ntasksPerNode)
 | |
| cpusPerTask = unique(df$config.cpusPerTask)
 | |
| df$unitName = as.factor(df$unitName)
 | |
| df$sizeFactor = as.factor(df$size)
 | |
| 
 | |
| df = group_by(df, unitName, sizeFactor) %>%
 | |
|   mutate(medianLatency = median(latency)) %>%
 | |
|   ungroup()
 | |
| 
 | |
| breaks = 10^(-10:10)
 | |
| minor_breaks <- rep(1:9, 21)*(10^rep(-10:10, each=9))
 | |
| 
 | |
| ppi=300
 | |
| h=3
 | |
| w=6
 | |
| 
 | |
| p = ggplot(data=df, aes(x=size, y=medianLatency)) +
 | |
| 	labs(x="Message size", y="Median latency (µs)",
 | |
|     #title=sprintf("OSU benchmark: osu_latency", nodes, tasksPerNode, cpusPerTask), 
 | |
|     subtitle=output) +
 | |
| 	geom_line(aes(linetype=unitName)) +
 | |
| 	geom_point(aes(shape=unitName), size=2) +
 | |
| 	scale_y_log10(breaks = breaks, minor_breaks = minor_breaks) +
 | |
|   scale_x_continuous(trans=log2_trans(),
 | |
|     labels=label_bytes("auto_binary"),
 | |
|     n.breaks = 12)+
 | |
|   scale_shape_discrete(name = "MPI version") +
 | |
|   scale_linetype_discrete(name = "MPI version") +
 | |
| 	theme_bw() +
 | |
|   theme(plot.subtitle = element_text(size=8, family="mono")) +
 | |
| 	theme(legend.justification = c(0,1), legend.position = c(0.01, 0.99)) +
 | |
|   theme(axis.text.x = element_text(angle=-45, hjust=0))
 | |
| 
 | |
| ggsave("median-lines.png", plot=p, width=w, height=h, dpi=ppi)
 | |
| ggsave("median-lines.pdf", plot=p, width=w, height=h, dpi=ppi)
 | |
| 
 | |
| p = ggplot(data=df, aes(x=size, y=latency)) +
 | |
| 	labs(x="Size (bytes)", y="Latency (us)",
 | |
|     #title=sprintf("OSU benchmark: osu_latency", nodes, tasksPerNode, cpusPerTask), 
 | |
|     subtitle=output) +
 | |
| 	geom_line(aes(y=medianLatency, linetype=unitName, group=unitName)) +
 | |
| 	geom_point(aes(shape=unitName), size=2) +
 | |
| 	scale_y_log10(breaks = breaks, minor_breaks = minor_breaks) +
 | |
|   scale_x_continuous(trans=log2_trans(),
 | |
|     labels=label_bytes("auto_binary"),
 | |
|     breaks=unique(df$size),
 | |
|     minor_breaks=NULL) +
 | |
| 	theme_bw() +
 | |
|   theme(plot.subtitle = element_text(color="gray50")) +
 | |
|   theme(axis.text.x = element_text(angle=-45, hjust=0)) +
 | |
| 	theme(legend.position = c(0.2, 0.8))
 | |
| 
 | |
| ggsave("latency.png", plot=p, width=w, height=h, dpi=ppi)
 | |
| ggsave("latency.pdf", plot=p, width=w, height=h, dpi=ppi)
 |